We propose a multi-kHz Single-Photon Counting (SPC) space LIDAR, exploiting low energy pulses with high repetition frequency (PRF). The high PRF allows one to overcome the low signal limitations, as many return shots can be collected from nearly the same scattering area. The ALART space instrument exhibits a multi-beam design, providing height retrieval over a wide area and terrain slope measurements. This novel technique, working with low SNRs, allows multiple beam generation with a single laser, limiting mass and power consumption. As the receiver has a certain probability to detect multiple photons from different levels of canopy, a histogram is constructed and used to retrieve the properties of the target tree, by means of a modal decomposition of the reconstructed waveform. A field demonstrator of the ALART space instrument is currently being developed by a European consortium led by cosine | measurement systems and funded by ESA under the TRP program. The demonstrator requirements have been derived to be representative of the target instrument and it will be tested in an equipped tower in woodland areas in the Netherlands. The employed detectors are state-of-the-art CMOS Single-Photon Avalanche Diode (SPAD) matrices with 1024 pixels. Each pixel is independently equipped with an integrated Time-to-Digital Converter (TDC), achieving a timing accuracy that is much lower than the SPAD dead time, resulting in a distance resolution in the centimeter range. The instrument emits nanosecond laser pulses with energy on the order of several μJ, at a PRF of ~ 10 kHz, and projects on ground a three-beams pattern. An extensive field measurement campaign will validate the employed technologies and algorithms for vegetation height retrieval.
During the past decade, small-footprint full-waveform lidar systems have become increasingly available, especially airborne. The primary output of these systems is high-resolution topographic information in the form of three-dimensional point clouds over large areas. Recording the temporal profile of the transmitted laser pulse and of its echoes enables to detect more echoes per pulse than in the case of discrete-return lidar systems, resulting in a higher point density over complex terrain. Furthermore, full-waveform instruments also allow for retrieving radiometric information of the scanned surfaces, commonly as an amplitude value and an echo width stored together with the 3D coordinates of the single points. However, the radiometric information needs to be calibrated in order to merge datasets acquired at different altitudes and/or with different instruments, so that the radiometric information becomes an object property independent of the flight mission and instrument parameters. State-of-the-art radiometric calibration techniques for full-waveform lidar data are based on Gaussian Decomposition to overcome the ill-posedness of the inherent inversion problem, i.e. deconvolution. However, these approaches make strong assumptions on the temporal profile of the transmitted laser pulse and the physical properties of the scanned surfaces, represented by the differential backscatter cross-section. In this paper, we present a novel approach for radiometric calibration using uniform B-splines. This kind of functions allows for linear inversion without constraining the temporal shape of the modeled signals. The theoretical derivation is illustrated by examples recorded with a Riegl LMS-Q560 and an Optech ALTM 3100 system, respectively.
Waveform calibration is a crucial task in the processing of full-waveform laser scanner data. In most cases, there is a non-linear
relationship between the "raw" waveform data stored by the sensor system and the actual input power. However, to
establish standardized methods for the post processing of waveform data, input data related linearly to the power input are
required. For some commercially available systems, this problem is handled by using a look-up table (LUT) as a transfer
function from the "raw" amplitude (stored by the sensor system) of the peaks of the waveforms to their actual amplitude.
Since the transformation is only valid for the peaks of the waveform, the question arises how this transformation would
perturbate the shape (i.e. position, width and amplitude) of a backscattered laser pulse if applied to the whole waveform.
This paper discusses the effects of the use of such non-linear transfer functions on complex laser scanner waveforms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.