Cross-sectional 4-D imaging of vocal fold morphology and function is desirable for accurate diagnosis of many vocal fold pathologies, which occur throughout the epithelial layer and alter the mucosal wave. Clinical videoendoscopy provides qualitative diagnostic information but remains limited to surface visualization of layered vocal fold structure and two-dimensional mucosal vibration. While OCT has been investigated to address the shortcomings of standard 2-D endoscopy, challenges remain in reconstruction of the 4-D mucosal wave over the entire vocal fold structure. To address these challenges, we have developed a fast-scanning OCT laryngoscope to enable asynchronous Nyquist sampling of the human voice fundamental frequency range (and its harmonics, up to 1 kHz). We present a new algorithm for reconstruction of the 4-D vocal fold dynamics during phonation using OCT volume data of the entire anterior-posterior vocal fold structure. Reconstruction of the vibration of a vocal fold phantom confirmed feasibility of the algorithm and preliminary reconstruction of the in vivo vocal fold glottal cycle is presented. This work represents the first cross-sectional Nyquist sampling of the in vivo human mucosal wave using an OCT system with hardware capable of encompassing the human fundamental frequency range (i.e., 90-260 Hz). The developed OCT laryngoscope and algorithm will enable volumetric representations of vocal fold dynamics in the clinic and development of quantitative metrics for diagnostic and interventional guidance.
We describe the optimization and application of a multi-window approach for improved resolution, side-lobe suppression, and phase sensitivity. Using the Hann window as a reference, we show that 10 windows are sufficient to achieve 42% resolution improvement, -31 dB side-lobe intensity, and a 20% improvement in phase sensitivity. We explored the benefits of this windowing technique for OCT imaging using a prototype narrow-band laser, OCT vibrometry, and Doppler OCT for angiography. Experimental data are in good agreement with simulation. We believe it will be possible using this optimized approach to achieve real-time processing and display, despite the added computational load.
Traumatic injury resulting in hemorrhage is a prevalent cause of death worldwide. The current standard of care for trauma patients is to restore hemostasis by controlling bleeding and administering intravenous volume resuscitation. Adequate resuscitation to restore tissue blood flow and oxygenation is critical within the first hours following admission to assess severity and avoid complications. However, current clinical methods for guiding resuscitation are not sensitive or specific enough to adequately understand the patient condition. To better address the shortcomings of the current methods, an approach to monitor intestinal perfusion and oxygenation using a multiwavelength (470, 560, and 630 nm) optical sensor has been developed based on photoplethysmography and reflectance spectroscopy. Specifically, two sensors were developed using three wavelengths to measure relative changes in the small intestine. Using vessel occlusion, systemic changes in oxygenation input, and induction of hemorrhagic shock, the capabilities and sensitivity of the sensor were explored in vivo. Pulsatile and nonpulsatile components of the red, blue, and green wavelength signals were analyzed for all three protocols (occlusion, systemic oxygenation changes, and shock) and were shown to differentiate perfusion and oxygenation changes in the jejunum. The blue and green signals produced better correlation to perfusion changes during occlusion and shock, while the red and blue signals, using a new correlation algorithm, produced better data for assessing changes in oxygenation induced both systemically and locally during shock. The conventional modulation ratio method was found to be an ineffective measure of oxygenation in the intestine due to noise and an algorithm was developed based on the Pearson correlation coefficient. The method utilized the difference in phase between two different wavelength signals to assess oxygen content. A combination of measures from the three wavelengths provided verification of oxygenation and perfusion states, and showed promise for the development of a clinical monitor.
Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.