Structured light is routinely used in free-space optical communication channels, both classical and quantum, where information is encoded in the spatial structure of the mode for increased bandwidth. Unlike polarisation, the spatial structure of light is perturbed through such channels by atmospheric turbulence, and consequently, much attention has focused on whether one mode type is more robust than another, but with seemingly inconclusive and contradictory results. Both real-world and experimentally simulated turbulence conditions have revealed that free-space structured light modes are perturbed in some manner by turbulence, resulting in both amplitude and phase distortions. Here, we present complex forms of structured light which are invariant under propagation through the atmosphere: the true eigenmodes of atmospheric turbulence. We provide a theoretical procedure for obtaining these eigenmodes and confirm their invariance both numerically and experimentally.
Structured light is routinely used in free-space optical communication channels, both classical and quantum, where information is encoded in the spatial structure of the mode for increased bandwidth. Both real-world and experimentally simulated turbulence conditions have revealed that free-space structured light modes are perturbed in some manner by turbulence, resulting in both amplitude and phase distortions, and consequently, much attention has focused on whether one mode type is more robust than another, but with seemingly inconclusive and contradictory results. We present complex forms of structured light that are invariant under propagation through the atmosphere: the true eigenmodes of atmospheric turbulence. We provide a theoretical procedure for obtaining these eigenmodes and confirm their invariance both numerically and experimentally. Although we have demonstrated the approach on atmospheric turbulence, its generality allows it to be extended to other channels too, such as aberrated paths, underwater, and in optical fiber.
We present an approach to filter amplitude noise from arbitrary beam profiles. This work forms a tutorial on Fourier optics by enhancing the textbook case of Gaussian beams to more interesting cases of structured light.
Noise is an unavoidable feature in most optical systems and many techniques exist to minimize its adverse effects. In this regard, spatial filtering is a commonly deployed technique to improve the quality of laser beams by optically filtering the noise. In the “textbook” example, the noise is usually assumed to be high frequency and the laser beam, Gaussian. In this case, the filtering is achieved by a simple pinhole placed at the common focal plane of two lenses. In this work, we describe how this process can be generalized to arbitrary beam profiles: spatial filtering of complex light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.