We have developed a packaged fiber amplifier configuration that allows for nearly two orders of magnitude of pulse width adjustment from 1ns to >800ns. This has been developed for both the 1-micron and 1.55-micron spectral regions. Our 1.55-micron fiber laser is packaged into a 6.63 x 8.65 x 3.47 in3 box, while our 1-micron fiber laser is packaged into a 13.68 x 8.68 x 3.56 in3 box, with the larger package a result of larger fiber components. These lasers offer a wide range of adjustable operating points, with total output ultimately limited by available pump power. For 1ns pulses, our 1.55-micron system generates up to 6μJ of pulse energy (>6kW peak) with transform-limited spectral output. Higher energies and output powers are achievable (up to 33μJ at 25kW peak), but the spectral output broadens slightly due to nonlinearities with <5ns pulse durations. For 1ns pulses at 1-micron, the system can generate 10uJ pulse energy (>10kW peak) with high spectral purity. At >10ns pulse durations, the same laser can generate up to 40μJ pulse energy (pump limited). A unique aspect of our design is that a single fiber laser package can be electrically adjusted to produce the full range of pulse widths at repetition rates ranging from 100kHz to <1MHz with well-behaved output pulse shapes and no rising-edge pulse distortions typically seen in high gain amplifiers. In this paper, we discuss our laser architecture, performance, packaging layout, packaging limitations, and a path toward more compact designs using standard fiber components.
We measure changes in the 2um absorption and emission spectra of thulium-doped silica fiber lasers operating from 80 K – 373 K. Reduction of the long wavelength tail of the 3H6-3H4 absorption feature under cryogenic cooling allows for efficient lasing in the 1800nm region. Greater than 17 W of output power was generated at 1850 nm by 793 nm diode-pumping a free-running single-mode thulium oscillator under cryogenic cooling conditions.
High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.
We compare large mode area (LMA) and single-mode (SM) double-clad fiber geometries for use in high power 1908nm fiber lasers. With a simple end-pumped architecture, we have generated 100W of 1908nm power with LMA fiber at 40% optical efficiency and 117W at 52.2% optical efficiency with single-mode fiber. We show the LMA fiber is capable of generating >200W and the SM fiber is capable of >300W at 1908nm. In all cases, the fiber lasers are monolithic power-oscillators with no free-space coupling.
We have demonstrated efficient lasing of a Tm-doped fiber when pumped with another Tm-doped fiber. In these experiments, we use a 1908 nm Tm-doped fiber laser as a pump source for another Tm-doped fiber laser, operating at a slightly longer wavelength (~2000 nm). Pumping in the 1900 nm region allows for very high optical efficiencies, low heat generation, and significant power scaling potential due to the use of fiber laser pumping. The trade-off is that the ground-state pump absorption at 1908 nm is ~37 times lower than at 795nm. However, the absorption cross-section is still sufficiently high enough to achieve effective pump absorption without exceedingly long fiber lengths. This may also be advantageous for distributing the thermal load in higher power applications.
An investigation of the birefringence uniformity of mid-IR non-linear optical crystals has been conducted in an effort to
improve the performance of crystals used in OPO converters. This paper discusses the development of an imaging
polarimeter operating at 2 μm for the characterization of birefringence uniformity of nonlinear optical crystals for use in
mid-IR generation. The spatial distribution of optical in-homogeneity is directly revealed in terms of optical rotation in
the polarimeter. The root cause for the optical rotation observed in the polarimeter is discussed in terms of fluctuations
in the material birefringence, or excess birefringence. Excess birefringence on the order of ▵n=10-4 are measured in
samples exhibiting the rare occurrence of low birefringence uniformity in our mid-IR nonlinear optical crystals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.