KEYWORDS: Target detection, Sensors, Calibration, Detection and tracking algorithms, Latex, Image sensors, Staring arrays, Cameras, Signal to noise ratio, Hyperspectral imaging, Scene based nonuniformity corrections
Hyperspectral imaging sensors suffer from pixel-to-pixel response nonuniformity that manifests as fixed pattern noise (FPN) in collected data. FPN is typically removed by application of flat-field calibration procedures and nonuniformity correction algorithms. Despite application of these techniques, some amount of residual fixed pattern noise (RFPN) may persist in the data, negatively impacting target detection performance. In this paper we examine the conditions under which RFPN can impact detection performance using data collected in the SWIR across a range of target materials. We examine the application of scene-based nonuniformity correction (SBNUC) algorithms and assess their ability to remove RFPN. Moreover, we examine the effect of RFPN after application of these techniques to assess detection performance on a number of target materials that range in inherent separability from the background.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.