COVID-19 has spread around the world since 2019. Approximately 6.5% of COVID-19 a risk of developing severe disease with high mortality rate. To reduce the mortality rate and provide appropriate treatment, this research established an integrated models with to predict the clinical outcome of COVID-19 patients with clinical, deep learning and radiomics features. To obtain the optimal feature combination for prediction, 9 clinical features combination was selected from all available clinical factors after using LASSO, 18 deep learning features from U-Net architecture, and9radiomics features from segmentation result. A total of 213 COVID-19 patients and 335 non-COVID-19 patients from5hospitals were enrolled and used as training and test sample in this research. The proposed model obtained an accuracy, precision, recall, specificity, F1-score and ROC curve of 0.971, 0.943, 0.937, 0.974, 0.941 and 0.979, respectively, which exceeds the related work using only clinical, deep learning or radiomics factors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.