Angular compounding is a technique for reducing speckle noise in optical coherence tomography that is claimed to significantly improve the signal-to-noise ratio of images without impairing their spatial resolution. Here we examine how focal point movements caused by optical aberrations in an angular compounding system may produce unintended spatial averaging and concomitant loss of spatial resolution. Experimentally, we accounted for such aberrations by aligning our system and measuring distortions in images, and found that when the distortions were corrected the speckle reduction by angular compounding was limited. Our theoretical analysis using Monte Carlo simulations indicates that “pure” angular compounding (i.e., with no spatial averaging) over our full numerical aperture (13° in air) can improve the signal-to-noise ratio by no more than a factor of 1.3. Illuminating only a partial aperture cannot improve this factor compared to a spatial averaging system with equivalent loss of resolution. We conclude that speckle reduction using angular compounding is equivalent to spatial averaging. Nonetheless, angular compounding may be useful for improving images in applications where depth of field is important. The distortions tend to be greatest off the focal plane, so angular compounding combined with our correction technique can reduce speckle with a minimal loss of resolution across a large depth of field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.