This work deals with the characterization of biochar deposited on a thin metallic sheet, used to enhance the evaporation in heat exchangers. The effectiveness of such deposit is done by means of the heated thin foil thermographic technique. The thermal diffusivity of the foil is the main objective of this study. In the proposed method, a pulse of 2 ms duration is produced by a laser, and periodically projected on the surface of an opaque sample of which the thermal parameters have been determined by classical measurements. The spatial distribution of the laser light pattern is random, after passing through a mask like a QR code. Several masks with different spatial features and distribution were prepared by sputtering thin layer (100 nm) of gold on a piece of glass covered by a pattern. Using the masks, samples were photothermally excited by impulsive laser light patterns. The resulting dynamic temperature field evolution at the sample surface was observed by a fast IR camera in the LW, and the thermal diffusion process was recorded by a sequence of IR images. In this contribution, a theoretical model is described and utilized to analyze the spatiotemporal dependence of the temperature field.
We studied the effects of two types of ultrasonic waves, shear waves and longitudinal waves, using two nonlinear optical techniques, second-harmonic generation and hyper-Rayleigh scattering. Since shear waves hardly propagate in liquids, their influence on molecules at the interface between a surface and a liquid was studied using second-harmonic generation. Longitudinal waves propagate easily in solution, thus we used hyper-Rayleigh scattering to probe the ultrasonic effects on chromophores in solution. While we did not find shear waves to alter the second-harmonic generation from chromophores at the liquid/surface interface, the longitudinal waves caused effects comparable to our earlier observations. Longitudinal ultrasound caused a strong intensity modulation of the nonlinear optical signal according to a wave-pattern.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.