KEYWORDS: Scanners, Image segmentation, Data acquisition, Magnetic resonance imaging, Evolutionary algorithms, Medical imaging, Image processing algorithms and systems, Data modeling, Artificial intelligence, Medicine
Machine learning algorithms tend to perform better within the setting wherein they are trained, a phenomenon known as the domain effect. Deep learning-based medical image segmentation algorithms are often trained using data acquired from specific scanners; however, these algorithms are expected to accurately segment anatomy in images acquired from scanners different from the ones used to obtain training images for such algorithms. In this work, we present evidence of a scanner and magnet strength specific domain effect for a deep-U-Net trained to segment spinal canals on axial MR images. The trained network performs better on new data from the same scanner and worse on data from other scanners, demonstrating a scanner-specific domain effect. We then construct ensembles of the U-Nets, in which each U-Net in the ensemble differs from others only in initialization. Finally, we demonstrate that these UNet ensembles reduce the differential between in-domain and out-of-domain performance, thereby mitigating the domain effect associated with single U-Nets. Our study evidences the importance of developing software robust to scanner-specific domain effects to handle scanner bias in Deep Learning.
Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.
Lower back pain and pathologies related to it are one of the most common results for a referral to a neurosurgical clinic in the developed and the developing world. Quantitative evaluation of these pathologies is a challenge. Image based measurements of angles/vertebral heights and disks could provide a potential quantitative biomarker for tracking and measuring these pathologies. Detection of vertebral bodies is a key element and is the focus of the current work. From the variety of medical imaging techniques, MRI and CT scans have been typically used for developing image segmentation methods. However, CT scans are known to give a large dose of x-rays, increasing cancer risk [8]. MRI can be substituted for CTs when the risk is high [8] but are difficult to obtain in smaller facilities due to cost and lack of expertise in the field [2]. X-rays provide another option with its ability to control the x-ray dosage, especially for young people, and its accessibility for smaller facilities. Hence, the ability to create quantitative biomarkers from x-ray data is especially valuable. Here, we develop a multiscale template matching, inspired by [9], to detect centers of vertebral bodies from x-ray data. The immediate application of such detection lies in developing quantitative biomarkers and in querying similar images in a database. Previously, shape similarity classification methods have been used to address this problem, but these are challenging to use in the presence of variation due to gross pathology and even subtle effects [1].
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.