The Center for Optics and Photonics of the National Astronomical Research Institute of Thailand, together with the Institut d’Optique Graduate School and the Centre de Recherche Astrohpysique de Lyon (CRAL), is currently developing the Evanescent Wave Coronagraph (EvWaCo). The coronagraph relies on the tunneling effect to produce a fully achromatic focal plane mask (FPM) with an adjustable size. The full instrument comprises a coronagraph and adaptive optics system that will be mounted on the Thai National Telescope and is specified to reach a raw contrast of 10−4 at an inner working angle of 3 Airy radii. The coronagraph will be used to perform high contrast observations of stellar systems during on-sky observations over the spectral domain [600 nm, 900 nm]. In this paper, we present the opto-mechanical design of the EvWaCo prototype and the performance measured in laboratory conditions. We also discuss the potential applications for space-based observations and the development plan under this project in the next five years.
The EXOplanet high resolution SPECtrograph (EXOhSPEC) instrument is an echelle spectrograph dedicated to the detection of exoplanets by using the radial velocity method using 2m class telescopes. This spectrograph is specified to provide spectra with a spectral resolution R < 70, 000 over the spectral range from 400 to 700 nm and to reach a shortterm radial velocity precision of 3 m/s. To achieve this the separation between two adjacent spectral orders is specified to be greater than 30 pixels and to enable a wide range of targets the throughput of the instrument is specified to be higher than 4%. We present the results of the optimization of the spectrograph collimator performed and initial tests of its optical performance. First, we consider the spectrograph design and we estimate its theoretical performance. We show that the theoretical image quality is close to the diffraction limit. Second, we describe the method used to perform the tolerancing analyzes using ZEMAX software to estimate the optical performance of the instrument after manufacturing, assembly and alignment. We present the results of the performance budget and we show that the estimated image quality performance of EXOhSPEC are in line with the specifications. Third, we present the results of the stray light analysis and we show that the minimum ratio between the scientific signal and the stray light halo signal is higher than 1,000. Finally, we provide a status on the progress of the EXOhSPEC project and we show the first results obtained with a preliminary version of the prototype.
The Exoplanet High-Resolution Spectrograph (EXOhSPEC) is a high-resolution spectrograph for the characterisation of exoplanets with the Thai National Telescope. The folded version of this instrument comprises one triplet lens to collimate the beam incident on the grating and to focus the beam reflected by the grating onto the camera. This collimator comprises three lenses L1, L2 and L3 of diameter varying between 50 mm and 60 mm. We specified the barrel to guarantee a maximum decenter of the lenses equal to 25 μm. The maximum error in the orientation of each single lens is specified to be lower than 0.03º. The proposed concept is based on a semi-kinematic mounting which is used to restrain these lenses with 6 and 30 N of preloads on the axial and lateral directions to ensure their stability. These preloads are applied to the lenses using the elastic pushing force of silicone elastomers and spring force from ball-plungers. We present the design of the collimator and the assembly method. Our Finite Element Analyses show that the maximum surface error induced by the preloads is lower than 60 nm Peak-To-Valley on each optical surface of L1, L2, and L3. We describe our manufacturing process using NARIT’s CNC machine and its validation using our Coordinate-Measuring Machine.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.