A scalable multatom entangled system, capable of high-performance quantum computations, can be realized by resonant dipole-dipole interacting dopants in a solid state host. In one realization, the qubits are represented by ground and subradiant states of effective dimers formed by pairs of closely spaced two-level systems (TLS). Such qubits are highly robust against radiative decay. The two-qubit entanglement in this scheme relies on coherent excitation exchange between the dimers by external laser fields. This scheme is challenging because of the nanosize control and addressability it requires. Another realization involves dipole-dipole interacting TLS whose resonance frequency lies in a photonic band gap of a dielectric photonic crystal. A sequence of abrupt changes of the resonance frequency can produce controlled entanglement (logic gates) with improved protection from radiation decay and decoherence.
We introduce and discuss two schemes for generation and transfer of photon-photon and atom-atom entanglement. First we propose a method to achieve a large conditional phase shift of a probe field in the presence of a single-photon control field whose carrier frequency is within the photonic band gap created by spatially-periodic modulation of the electromagnetically induced transparency resonance. Then we present the concept of a reversible transfer of the quantum state of two internally-translationally entangled fragments, formed by molecular dissociation, to a photon pair. Our scheme allows, in principle, high-fidelity state transfer from the entangled dissociated fragments to light, thereby producing a highly correlated photon pair. This process can be followed by its reversal at a distant node of a quantum network resulting in the recreation of the original two-fragment entangled state. The proposed schemes may have advantageous applications in quantum teleportation, cryptography, and quantum computation.
We survey basic quantum optical processes that undergo modifications in photonic crystals doped with resonant atoms: (a) Solitons and multi-dimensional localized 'bullets' propagating at photonic band gap frequencies. These novel entities differ substantially from solitons in Kerr-nonlinear photonic crystals. (b) Giant photon-photon cross-coupling that can give rise to fully entangled two-photon states. We conclude that doped photonic crystals have the capacity to form efficient networks for high-fidelity classical and quantum optical communications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.