Lead halide perovskites are known for their great potential in high-performance light-harvesting devices. We investigated the exciton recombination properties of 2D perovskites. We resolved two bright (optically allowed) exciton doublets and a dark (optically forbidden) exciton. Particularly, under the inherently strong electron-hole exchange interaction, each bright exciton doublet is split into two orthogonally orienting dipoles with large energy splitting of 2 meV, which is the largest experimental values in two-dimensional semiconductors. Furthermore, we observed an efficient transfer of oscillator strengths from the bright excitons to a dark exciton, which originates from strong spin-mixing between bright and dark excitons induced by external magnetic fields, and the optical emission from the dark exciton is brightened. Our results reveal that the physics on exciton recombination in 2D perovskites is rich, while the optical emission properties can be manipulated by external fields
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.