Large-format infrared detectors are at the heart of major ground and space-based astronomical instruments, and the HgCdTe HxRG is the most widely used. The Near Infrared Spectrometer and Photometer (NISP) of the ESA’s Euclid mission launched in July 2023 hosts 16 H2RG detectors in the focal plane. Their performance relies heavily on the effect of image persistence, which results in residual images that can remain in the detector for a long time contaminating any subsequent observations. Deriving a precise model of image persistence is challenging due to the sensitivity of this effect to observation history going back hours or even days. Nevertheless, persistence removal is a critical part of image processing because it limits the accuracy of the derived cosmological parameters. We will present the empirical model of image persistence derived from ground characterization data, adapted to the Euclid observation sequence and compared with the data obtained during the in-orbit calibrations of the satellite.
Launched successfully on July 1st, 2023, Euclid, the M2 mission of the ESA cosmic vision program, aims mainly at understanding the origin of the accelerated expansion of the Universe. Along with a visible imager VIS, it is equipped with the NISP instrument, a Near Infrared Spectrometer and Photometer, bespoke tailored to perform a 3D mapping of the observable Universe. It operates in the near-infrared spectral range, from 900 nm to 2000 nm with 2 observing modes: as a spectrometer, the NISP instrument will permit measuring millions of galaxy spectroscopic redshifts over the 6.5 years lifetime of the Euclid mission; as a photometer, it will obtain photometric redshifts of billions of galaxies. This paper provides a description of the NISP instrument, its scientific objectives, and offers an assessment of its current performance in flight.
Euclid is a European Space Agency (ESA) wide-field space mission dedicated to the high-precision study of dark energy and dark matter. In July 2023 a Space X Falcon 9 launch vehicle put the spacecraft in its target orbit, located 1.5 million kilometers away from Earth, for a nominal lifetime of 6.5 years. The survey will be realized through a wide field telescope and two instruments: a visible imager (VIS) and a Near Infrared Spectrometer and Photometer (NISP). NISP is a state-of-the-art instrument composed of many subsystems, including an optomechanical assembly, cryogenic mechanisms, and active thermal control. The Instrument Control Unit (ICU) is interfaced with the SpaceCraft and manages the commanding and housekeeping production while the high-performance Data Processing Unit manages more than 200 Gbit of compressed data acquired daily during the nominal survey. To achieve the demanding performance necessary to meet the mission’s scientific goals, NISP requires periodic in-flight calibrations, instrument parameters monitoring, and careful control of systematic effects. The high stability required implies that operations are coordinated and synchronized with high precision between the two instruments and the platform. Careful planning of commanding sequences, lookahead, and forecasting instrument monitoring is needed, with greater complexity than previous survey missions. Furthermore, NISP is operated in different environments and configurations during development, verification, commissioning, and nominal operations. This paper presents an overview of the NISP instrument operations at the beginning of routine observations. The necessary tools, workflows, and organizational structures are described. Finally, we show examples of how instrument monitoring was implemented in flight during the crucial commissioning phase, the effect of intense Solar activity on the transmission of onboard data, and how IOT successfully addressed this issue.
R. Laureijs, R. Vavrek, G. Racca, R. Kohley, P. Ferruit, V. Pettorino, T. Bönke, A. Calvi, L. Gaspar Venancio, L. Campos, E. Maiorano, O. Piersanti, S. Prezelus, U. Ragnit, P. Rosato, C. Rosso, H. Rozemeijer, A. Short, P. Strada, D. Stramaccioni, M. Szafraniec, B. Altieri, G. Buenadicha, X. Dupac, P. Gómez Cambronero, K. Henares Vilaboa, C. Hernandez de la Torre, J. Hoar, M. Lopez-Caniego Alcarria, P. Marcos Arenal, J. Martin Fleitas, M. Miluzio, A. Mora, S. Nieto, R. Perez Bonilla, P. Teodoro Idiago, F. Cordero, J. Mendes, F. Renk, A. Rudolph, M. Schmidt, J. Schwartz, Y. Mellier, H. Aussel, M. Berthé, P. Casenove, M. Cropper, J. Cuillandre, J. Dinis, A. Gregorio, K. Kuijken, T. Maciaszek, L. Miller, R. Scaramella, M. Schirmer, I. Tereno, A. Zacchei, S. Awan, G. Candini, P. Liebing, R. Nakajima, S. Dusini, P. Battaglia, E. Medinaceli, C. Sirignano, I. Baldry, C. Baugh, F. Bernardeau, F. Castander, A. Cimatti, W. Gillard, L. Guzzo, H. Hoekstra, K. Jahnke, T. Kitching, E. Martin, J. Mohr, W. Percival, J. Rhodes
During its 6-year nominal mission, Euclid shall survey one third of the sky, enabling us to examine the spatial distributions of dark and luminous matter during the past 10 Gyr of cosmic history. The Euclid satellite was successfully launched on a SpaceX Falcon 9 launcher from Cape Canaveral on 1 July 2023 and is fully operational in a halo orbit around the Second Sun-Earth Lagrange point. We present an overview of the expected and unexpected findings during the early phases of the mission, in the context of technological heritage and lessons learnt. The first months of the mission were dedicated to the commissioning of the spacecraft, telescope and instruments, followed by a phase to verify the scientific performance and to carry out the in-orbit calibrations. We report that the key enabling scientific elements, the 1.2-meter telescope and the two scientific instruments, a visual imager (VIS) and a near-infrared spectrometer and photometer (NISP), show an inorbit performance in line with the expectations from ground tests. The scientific analysis of the observations from the Early Release Observations (ERO) program done before the start of the nominal mission showed sensitivities better than the prelaunch requirements. The nominal mission started in December 2023, and we allocated a 6-month early survey operations phase to closely monitor the performance of the sky survey. We conclude with an outlook of the activities for the remaining mission in the light of the in-orbit performance.
Ariel is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. It has been selected by ESA in March 2018 and adopted in November 2020 to be flown, then, in 2029. It is the first survey mission dedicated to measuring the chemical composition and thermal structures of the atmospheres of hundreds of transiting exoplanets, in order to enable planetary science far beyond the boundaries of the Solar System. The Payload (P/L) is based on a cold section (PLM – Payload Module) working at cryogenic temperatures and a warm section, located within the Spacecraft (S/C) Service Vehicle Module (SVM) and hosting five warm units operated at ambient temperature (253-313 K). The P/L and its electrical, electronic and data handling architecture has been designed and optimized to perform transit spectroscopy from space during primary and secondary planetary eclipses in order to achieve a large set of unbiased observations to shed light and fully understand the nature of exoplanets atmospheres, retrieving information about planets interior and determining the key factors affecting the formation and evolution of planetary systems.
Euclid, the M2 mission of the ESA’s Cosmic Vision 2015-2025 program, aims to explore the Dark Universe by conducting a survey of approximately 14 000 deg2 and creating a 3D map of the observable Universe of around 1.5 billion galaxies up to redshift z ∼ 2. This mission uses two main cosmological probes: weak gravitational lensing and galaxy clustering, leveraging the high-resolution imaging capabilities of the Visual Imaging (VIS) instrument and the photometric and spectroscopic measurements of the Near Infrared Spectrometer and Photometer (NISP) instrument. This paper details some of the activities performed during the commissioning phase of the NISP instrument, following the launch of Euclid on July 1, 2023. In particular, we focus on the calibration of the NISP detectors’ baseline and on the performance of a parameter provided by the onboard data processing (called NISP Quality Factor, QF) in detecting the variability of the flux of cosmic rays hitting the NISP detectors. The NISP focal plane hosts sixteen Teledyne HAWAII-2RG (H2RG) detectors. The calibration of these detectors includes the baseline optimization, which optimizes the dynamic range and stability of the signal acquisition. Additionally, this paper investigates the impact of Solar proton flux on the NISP QF, particularly during periods of high Solar activity. Applying a selection criterion on the QF (called NISP QF Proxy), the excess counts are used to monitor the amount of charged particles hitting the NISP detectors. A good correlation was found between the Solar proton flux component above 30 MeV and the NISP QF Proxy, revealing that NISP detectors are not subject to the lower energy components, which are absorbed by the shielding provided by the spacecraft.
KEYWORDS: Sensors, X-rays, Electronics, Signal detection, Field programmable gate arrays, Amplifiers, System on a chip, Software development, Prototyping, Data compression
In this paper we describe the current development state of the Athena X-IFU instrument control unit and its application software. Athena is a ESA large mission scheduled for launch in the early 2030s, that has reached the instrument requirement review phase. Not all of the needed functionalities are frozen yet, but the baseline concept and implementation will be described. While the hardware part will be based on well developed solution, some of the software functionalities, in particular the OBCP engine, will need to be developed and qualified. We will describe our approach for development and testing. The X-IFU instrument will use a Spacewire network for communications with the platform and internally between the ICU and the other subsystems, with the ICU providing the routing capabilities for housekeeping telemetry and telecommand as well as the scientific data. We will describe some aspects of the implementation of such a network.
The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments (see ref [1]). It operates in the near-IR spectral region (950-2020nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly, a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection system based on a mosaic of 16 H2RG with their front-end readout electronic. - a warm electronic system (290K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This paper presents: - the final architecture of the flight model instrument and subsystems - the performances and the ground calibration measurement done at NISP level and at Euclid Payload Module level at operational cold temperature.
ESA’s mission Euclid while undertaking its final integration stage is fully qualified. Euclid will perform an extra galactic survey (0<z<2) using visible and near-infrared light. To detect the infrared radiation is equipped with the Near Infrared Spectro-Photometer (NISP) instrument with a sensitivity in the 0.9-2 μm range. We present an illustration of the NISP Data Processing Unit’s Application Software, highlighting the experimental process to obtain the final parametrization of the on-board processing of data produced by an array of 16 Teledyne’s HAWAII-2RG (HgCdTe) - each of 2048×2048 px2, 0.3 arcsec/px, 18 μm pixel pitch; using data from the latest test campaigns done with the flight configuration hardware - complete optical system (Korsh anastigmat telescope), detectors array (0.56 deg2 firld of view) and readout systems (16 Digital Control Units and Sidecar ASICs). Also, we show the outstanding Spectrometric (using a Blue and two Red Grisms) and Photometric (using YE 0.92-1.15μm, JE 1.15-1.37μm, and HE 1.37-2.0 μm filters) performances of the NISP detector derived from the end-to-end payload module test campaign at FOCAL 5 - CSL; among them the Photometric Point Spread Function (PSF) determination, and the Spectroscopic dispersion verification. Also the performances of the onboard processing are presented. Then, we describe the solution of a major issue found during this final test phase that put NISP in the critical path. We will describe how the problem was eventually understood and solved thanks to an intensive coordinated effort of an independent review team (tiger team lead by ESA) and a team of NISP experts from the Euclid Consortium. An extended PLM level campaign in ambient in Liege and a dedicated test campaign conducted in Marseille on the NISP EQM model, with both industrial and managerial support, finally confirmed the correctness of the diagnosis of the problem. Finally, the Euclid’s survey is presented (14000 deg2 wide survey, and ∼40 deg2 deep-survey) as well as the global statistics for a mission lifetime of 6 years (∼1.5 billion Galaxy’s shapes, and ∼50 million Galaxy’s spectra).
A description of the Data Processing Unit’s (DPU) hardware and the Application Software (ASW) of the Near Infrared Spectro-Photometer (NISP) at EUCLID mission is given. NISP is composed by a focal plane of 16 H2RG HAWAII near infrared detectors (0.9÷2 μm) interfaced with 16 ASICs, both produced by Teledyne. The complete system is handled by two identical DPU units running in parallel and independently with the same ASW, and each governing 8 detector chains. Flight DPU units were used for validating the ASW as well as a single EQM model of the DPU (fully representative of the Flight model). Details of the DPU hardware components and its most relevant performances are described, focusing on the Digital Control Units’ handling of data coming from the ASICs. It is also described the ASW architecture emphasizing the onboard data pre-processing in which a series of on-line operations are performed to reduce the amount of data sent to ground, thus guaranteeing its consistency and quality (i.e. multi accumulation charge slope fit calculation, quality factor evaluation, reference pixel correction, saturation pixels flagging and lossless compression). Finally, a description of the latest NISP system’s test campaigns focusing on those for the Electromagnetic Compatibility, Susceptibility and Thermal Vacuum is provided; and a detail description of the results used to successfully validate the DPU ASW.
KEYWORDS: Sensors, Data processing, Space operations, Data acquisition, Signal detection, Electronics, Control systems, Interfaces, Software development
In this paper we describe the application software (ASW) of the instrument control unit (ICU) of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software is based on a real-time operating system (RTEMS) and will interface with all the subunits of NISP, as well as the command and data management unit (CDMU) of the spacecraft for telecommand and housekeeping management.
KEYWORDS: Data storage, Near infrared, Computing systems, Data processing, Sensors, Data archive systems, Data modeling, Control systems, Databases, Data conversion
The NISP instrument on board the Euclid ESA mission will be developed and tested at different levels of integration
using various test equipment which shall be designed and procured through a collaborative and coordinated effort. The
NISP Instrument Workstation (NI-IWS) will be part of the EGSE configuration that will support the NISP AIV/AIT
activities from the NISP Warm Electronics level up to the launch of Euclid. One workstation is required for the NISP
EQM/AVM, and a second one for the NISP FM. Each workstation will follow the respective NISP model after delivery
to ESA for Payload and Satellite AIV/AIT and launch. At these levels the NI-IWS shall be configured as part of the
Payload EGSE, the System EGSE, and the Launch EGSE, respectively. After launch, the NI-IWS will be also re-used in
the Euclid Ground Segment in order to support the Commissioning and Performance Verification (CPV) phase, and for
troubleshooting purposes during the operational phase.
The NI-IWS is mainly aimed at the local storage in a suitable format of the NISP instrument data and metadata, at local
retrieval, processing and display of the stored data for on-line instrument assessment, and at the remote retrieval of the
stored data for off-line analysis on other computers.
We describe the design of the IWS software that will create a suitable interface to the external systems in each of the
various configurations envisaged at the different levels, and provide the capabilities required to monitor and verify the
instrument functionalities and performance throughout all phases of the NISP lifetime.
The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe
by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision
program with its launch planned for 2020 (ref [1]).
The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900-
2000nm) as a photometer and spectrometer. The instrument is composed of:
- a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel
mechanism, a grism wheel mechanism, a calibration unit and a thermal control system
- a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a
mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem
structure
- a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the
spacecraft via a 1553 bus for command and control and via Spacewire links for science data
This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the
technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal
model (STM).
KEYWORDS: Space telescopes, Space operations, Telescopes, Space operations, Local area networks, Databases, Control systems, Fermium, Frequency modulation, Device simulation, Data modeling
The Near Infrared Spectro-Photometer (NISP) on board the Euclid ESA mission will be developed and tested at various
levels of integration by using various test equipment. The Electrical Ground Support Equipment (EGSE) shall be
required to support the assembly, integration, verification and testing (AIV/AIT) and calibration activities at instrument
level before delivery to ESA, and at satellite level, when the NISP instrument is mounted on the spacecraft. In the case of
the Euclid mission this EGSE will be provided by ESA to NISP team, in the HW/SW framework called "CCS Lite", with
a possible first usage already during the Warm Electronics (WE) AIV/AIT activities. In this paper we discuss how we
will customize that "CCS Lite" as required to support both the WE and Instrument test activities. This customization will
primarily involve building the NISP Mission Information Base (the CCS MIB tables) by gathering the relevant data from
the instrument sub-units and validating these inputs through specific tools. Secondarily, it will imply developing a
suitable set of test sequences, by using uTOPE (an extension to the TCL scripting language, included in the CCS
framework), in order to implement the foreseen test procedures. In addition and in parallel, custom interfaces shall be set
up between the CCS and the NI-IWS (the NISP Instrument Workstation, which will be in use at any level starting from
the WE activities), and also between the CCS and the TCC (the Telescope Control and command Computer, to be only
and specifically used during the instrument level tests).
KEYWORDS: Control systems, Software development, Space operations, Data processing, Sensors, Control systems, Data acquisition, Field programmable gate arrays, Technetium, Electronics, Calibration
In this paper we describe the detailed design of the application software (ASW) of the instrument control unit (ICU) of
NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software is based on a real-time operating
system (RTEMS) and will interface with all the subunits of NISP, as well as the command and data management unit
(CDMU) of the spacecraft for telecommand and housekeeping management. We briefly review the main requirements
driving the design and the architecture of the software that is approaching the Critical Design Review level. The
interaction with the data processing unit (DPU), which is the intelligent subunit controlling the detector system, is
described in detail, as well as the concept for the implementation of the failure detection, isolation and recovery (FDIR)
algorithms. The first version of the software is under development on a Breadboard model produced by
AIRBUS/CRISA. We describe the results of the tests and the main performances and budgets.
KEYWORDS: Data processing, Sensors, Near infrared, Spectrographs, Photometry, Data processing, Signal detection, Detection and tracking algorithms, Spectroscopy, Space operations, Image compression
The Near Infrared Spectrograph and Photometer (NISP) is one of the two instruments on board the EUCLID mission now under implementation phase; VIS, the Visible Imager is the second instrument working on the same shared optical beam. The NISP focal plane is based on a detector mosaic deploying 16x, 2048x2048 pixels^2 HAWAII-II HgCdTe detectors, now in advanced delivery phase from Teledyne Imaging Scientific (TIS), and will provide NIR imaging in three bands (Y, J, H) plus slit-less spectroscopy in the range 0.9÷2.0 micron. All the NISP observational modes will be supported by different parametrization of the classic multi-accumulation IR detector readout mode covering the specific needs for spectroscopic, photometric and calibration exposures. Due to the large number of deployed detectors and to the limited satellite telemetry available to ground, a consistent part of the data processing, conventionally performed off-line, will be accomplished on board, in parallel with the flow of data acquisitions. This has led to the development of a specific on-board, HW/SW, data processing pipeline, and to the design of computationally performing control electronics, suited to cope with the time constraints of the NISP acquisition sequences during the sky survey. In this paper we present the architecture of the NISP on-board processing system, directly interfaced to the SIDECAR ASICs system managing the detector focal plane, and the implementation of the on-board pipe-line allowing all the basic operations of input frame averaging, final frame interpolation and data-volume compression before ground down-link.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.