KEYWORDS: Singular value decomposition, Electromagnetism, Matrices, Magnetism, Education and training, Inverse problems, Neural networks, Data modeling, Spatial resolution, Electric fields
This study addresses a 2D scalar electromagnetic inverse source problem by using a deep neural network-based artificial intelligence technique. Specifically, the Learned Singular Value Decomposition (L-SVD) approach based on hybrid autoencoding is adopted. The main goal is to reproduce the singular value decomposition through neural networks and compare the reconstruction performance of L-SVD and truncated SVD (TSVD) in the case of noiseless data, which represents a reference benchmark. The results demonstrate that L-SVD outperforms TSVD in terms of spatial resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.