KEYWORDS: X-rays, Solar concentrators, Sensors, X-ray detectors, Aerospace engineering, Analog electronics, Mathematical modeling, Device simulation, Signal detection, Space telescopes
Neutron star Interior Composition ExploreR (NICER) is a NASA instrument to be onboard International Space Station, which is equipped with 56 pairs of an X-ray concentrator (XRC) and a silicon drift detector for high timing observations. The XRC is based on an epoxy replicated thin aluminum foil X-ray mirror, similar to those of Suzaku and ASTRO-H (Hitomi), but only a single stage parabolic grazing incidence optic. Each has a focal length of 1.085m and a diameter of 105 mm, with 24 confocally aligned parabolic shells. Grazing incident angles to individual shells range from 0.4 to 1.4 deg. The flight 56 XRCs have been completed and successfully delivered to the payload integration. All the XRC was characterized at the NASA/GSFC 100-m X-ray beamline using 1.5 keV X-rays (some of them are also at 4.5 keV). The XRC performance, effective area and point spread function, was measured by a CCD camera and a proportional counter. The average effective area is about 44 cm2 at 1.5 keV and about 18 cm2 at 4.5 keV, which is consistent with a micro-roughness of 0.5nm from individual shell reflectivity measurements. The XRC focuses about 91% of X-rays into a 2mm aperture at the focal plane, which is the NICER detector window size. Each XRC weighs only 325 g. These performance met the project requirement. In this paper, we will present summary of the flight XRC performance as well as co-alignment results of the 56 XRCs on the flight payload as it is important to estimate the total effective for astronomical observations.
Keith Gendreau, Zaven Arzoumanian, Phillip Adkins, Cheryl Albert, John Anders, Andrew Aylward, Charles Baker, Erin Balsamo, William Bamford, Suyog Benegalrao, Daniel Berry, Shiraz Bhalwani, J. Kevin Black, Carl Blaurock, Ginger Bronke, Gary Brown, Jason Budinoff, Jeffrey Cantwell, Thoniel Cazeau, Philip Chen, Thomas Clement, Andrew Colangelo, Jerry Coleman, Jonathan Coopersmith, William Dehaven, John Doty, Mark Egan, Teruaki Enoto, Terry Fan, Deneen Ferro, Richard Foster, Nicholas Galassi, Luis Gallo, Chris Green, Dave Grosh, Kong Ha, Monther Hasouneh, Kristofer Heefner, Phyllis Hestnes, Lisa Hoge, Tawanda Jacobs, John Jørgensen, Michael Kaiser, James Kellogg, Steven Kenyon, Richard Koenecke, Robert Kozon, Beverly LaMarr, Mike Lambertson, Anne Larson, Steven Lentine, Jesse Lewis, Michael Lilly, Kuochia Alice Liu, Andrew Malonis, Sridhar Manthripragada, Craig Markwardt, Bryan Matonak, Isaac Mcginnis, Roger Miller, Alissa Mitchell, Jason Mitchell, Jelila Mohammed, Charles Monroe, Kristina Montt de Garcia, Peter Mulé, Louis Nagao, Son Ngo, Eric Norris, Dwight Norwood, Joseph Novotka, Takashi Okajima, Lawrence Olsen, Chimaobi Onyeachu, Henry Orosco, Jacqualine Peterson, Kristina Pevear, Karen Pham, Sue Pollard, John Pope, Daniel Powers, Charles Powers, Samuel Price, Gregory Prigozhin, Julian Ramirez, Winston Reid, Ronald Remillard, Eric Rogstad, Glenn Rosecrans, John Rowe, Jennifer Sager, Claude Sanders, Bruce Savadkin, Maxine Saylor, Alexander Schaeffer, Nancy Schweiss, Sean Semper, Peter Serlemitsos, Larry Shackelford, Yang Soong, Jonathan Struebel, Michael Vezie, Joel Villasenor, Luke Winternitz, George Wofford, Michael Wright, Mike Yang, Wayne Yu
During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded success- fully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray "con- centrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.
Consistent improvements in the design and fabrication of thin-foil, epoxy-replicated x-ray mirrors for astronomical telescopes have yielded increasingly higher quality and more precise astrophysical data. The Neutron Star Interior Composition Explorer (NICER) x-ray timing mission optics continues this tradition and introduces design elements that promise even more accurate measurements and precise astrophysical parameters. The singly reflecting concentrators have a curved axial profile to improve photon concentration and a sturdy full shell structure for enhanced module stability. These design elements introduced the challenge of reliably forming mirror substrates at an acceptable production rate. By developing a technique using heat shrink tape to compress and conform thin aluminum mirror substrates to shaping mandrels, production rate improved with successful fabrication. The technique’s efficiency was analyzed by measuring hundreds of substrate profiles postforming, performance testing completely assembled concentrators composed of every size substrate, and comparing the results to simulated fabrication scenarios. On average, the profiles were copied within 4.6±3.7%. These measurements and the overall success of NICER’s optics, via ground calibration, have shown that the heat-shrink tape method is reliable, repeatable, and could be used in future missions to increase production rate and improve performance.
We performed a series of measurements using X-rays to assess the current performance of the Neutron star Interior Composition ExploreR (NICER) X-ray concentrators during the mission's concept study stage. NICER will use 56 grazing-incidence X-ray concentrators in the optical system with each module focusing the incoming photons to co-aligned silicon drift detectors with 2 mm apertures. Successful X-ray timing and navigation studies require optimal signal to noise, thus by optimizing high throughput concentrators with a large collecting area we can minimize the PSF and reduce the detector aperture size, reducing background. The performance measurements were conducted in a 600 meter X-ray beamline which collimated photons from a soft X-ray source to an X-ray CCD which was used as the detector. Several engineering test units were used to perform these studies by measuring the effective area, on and off-axis resolution, and to assess the effects of a vibration test on the module's optical performance. We have shown that the concentrators have made significant progress towards exceeding NICER's final goals.
The scientific objective of the X-ray Advanced Concepts Testbed (XACT) is to measure the X-ray polarization
properties of the Crab Nebula, the Crab pulsar, and the accreting binary Her X-1. Polarimetry is a powerful tool for
astrophysical investigation that has yet to be exploited in the X-ray band, where it promises unique insights into neutron
stars, black holes, and other extreme-physics environments. With powerful new enabling technologies, XACT will
demonstrate X-ray polarimetry as a practical and flight-ready astronomical technique. Additional technologies that
XACT will bring to flight readiness will also provide new X-ray optics and calibration capabilities for NASA missions
that pursue space-based X-ray spectroscopy, timing, and photometry.
NICER will use full shell aluminum foil X-ray mirrors, similar to those that are currently being developed for the
optics to be used for the XACT sounding rocket mission. Similar X-ray optics have been produced at Goddard
Space Flight Center since the late 1970's. The mirror geometry used in the past and on some present missions
consists of concentric quadrant shell mirrors with a conical approximation to the Wolter 1 geometry. For XACT,
we are developing the next generation of these optics. Two innovations introduced in the mirrors are complete
shells with a curve is in the reflectors' profile to produce a sharper focus than a conical approximation. X-ray
imagers, such as those of Suzaku, ASCA, GEMS, and Astro-H require two reflections. Since XACT and NICER
are using the optics as X-ray concentrators rather than full imaging optics, only one set of reflections is necessary.
The largest shell in the NICER concentrator is 10cm diameter. Small diameter optics benefit from the rigidity
of the full shell design. Also, the simplified support hardware reduced mass, which increases the effective area
per unit mass. With 56 optics on NICER, each consisting of 24 full shell mirrors, an effective production process
is needed for efficient manufacture of these mirrors. This production process is based on heritage techniques but
modified for these new mirrors. This paper presents the production process of the innovative full shell optics
and also results of optical and X-ray tests of the integrated optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.