SiFAP4XP is a new COTS PI instrument mounted at the TNG aimed at observing in the visible band some polarimetric objects simultaneously to IXPE. SiFAP4XP is an experience-based improvement over the previous version of the photometer SiFAP2 currently mounted at the F/11 focus of the TNG. SiFAP4XP takes advantage of the already installed polarimetric unit of Dolores, called PAOLO, based on a double Wollaston prism to split the 4 polarization parameters. Four pairs of Silicon MPPCs are mounted on both sides of a small optical bench and each pair of detectors receives from PAOLO the polarized light of the target and of the nearby sky through 8 optical relays. Another relay is dedicated to A&G. The control electronics are based on Red-Pitayas for photon counting, on GPS disciplined clocks for time tagging the photons with a resolution of 8ns. First light is scheduled for the end of February 2022.
We present an UV spectrograph with an in-vacuum resolution R=λ/Δλ≈20000 covering the 70-400 nm wavelength range with an échelle configuration. The instrument is now in the assembly, test and verification phase, as a milestone of the project LAPSUS (LAboratory Plasma Spectroscopy for Ultraviolet Space) funded to the Italian National Institute for Nuclear Physics – Laboratori Nazionali del Sud (INFN-LNS) by the Italian Space Agency in 2020. The goal of the project is to build an experimental atomic database in the UV spectral range, useful to interpret astrophysical spectra acquired by space missions. For this purpose the LAPSUS spectrograph will be coupled to the plasma traps operating at INFN-LNS, in order to apply high resolution spectroscopy to the emission of laboratory plasmas resembling astrophysical environments.
Sebastiano Aiello, Arnauld Albert, Sergio Alves Garre, Zineb Aly, Fabrizio Ameli, Michel Andre, Giorgos Androulakis, Marco Anghinolfi, Mancia Anguita, Gisela Anton, Miquel Ardid, Julien Aublin, Christos Bagatelas, Giancarlo Barbarino, Bruny Baret, Suzan Basegmez du Pree, Anastasios Belias, Meriem Bendahman, Edward Berbee, Ad van den Berg, Vincent Bertin, Vincent van Beveren, Simone Biagi, Andrea Biagioni, Matthias Bissinger, Markus Boettcher, Jihad Boumaaza, Mohammed Bouta, Mieke Bouwhuis, Cristiano Bozza, Horea Brânzas, Ronald Bruijn, Jurgen Brunner, Ernst-Jan Buis, Raffaele Buompane, Jose Busto, Barbara Caiffi, David Calvo, Antonio Capone, Victor Carretero, Paolo Castaldi, Silvia Celli, Mohamed Chabab, Nhan Chau, Andrew Chen, Silvio Cherubini, Vitaliano Chiarella, Tommaso Chiarusi, Marco Circella, Rosanna Cocimano, Joao A. Coelho, Alexis Coleiro, Marta Colomer Molla, Stephane Colonges, Rosa Coniglione, Imanol Corredoira, Paschal Coyle, Alexandre Creusot, Giacomo Cuttone, Antonio D'Amico, Antonio D’Onofrio, Richard Dallier, Mauro De Palma, Irene Di Palma, Antonio Díaz, Didac Diego-Tortosa, Carla Distefano, Alba Domi, Roberto Donà, Corinne Donzaud, Damien Dornic, Manuel Dörr, Doriane Drouhin, Thomas Eberl, Ahmed Eddyamoui, Thijs van Eeden, Daan van Eijk, Imad El Bojaddaini, Dominik Elsaesser, Alexander Enzenhoefer, Victor Espinosa Rosell, Paolo Fermani, Giovanna Ferrara, Miroslav Filipovic, Francesco Filippini, Luigi Antonio Fusco, Omar Gabella, Tamas Gal, Alfonso Andres Garcia Soto, Fabio Garufi, Yoann Gatelet, Nicole Geißelbrecht, Lucio Gialanella, Emidio Giorgio, Sara Gozzini, Rodrigo Gracia, Kay Graf, Dario Grasso, Giuseppe Grella, Daniel Guderian, Carlo Guidi, Steffen Hallmann, Hassane Hamdaoui, Hans van Haren, Aart Heijboer, Amar Hekalo, Juan Hernández-Rey, Jannik Hofestädt, Feifei Huang, Walid Idrissi Ibnsalih, Alin Ilioni, Giulia Illuminati, Clancy James, Peter Jansweijer, Maarten de Jong, Paul de Jong, Bouke Jisse Jung, Matthias Kadler, Piotr Kalaczyński, Oleg Kalekin, Uli Katz, Nafis Khan Chowdhury, Giorgi Kistauri, Frits van der Knaap, Els Koffeman, Paul Kooijman, Antoine Kouchner, Michael Kreter, Vladimir Kulikovskiy, Robert Lahmann, Giuseppina Larosa, Remy Le Breton, Ornella Leonardi, Francesco Leone, Emanuele Leonora, Jean Lesrel, Giuseppe Levi, Massimiliano Lincetto, Miles Lindsey Clark, Thomas Lipreau, Alessandro Lonardo, Fabio Longhitano, Daniel Lopez-Coto, Lukas Maderer, Jerzy Mańczak, Karl Mannheim, Annarita Margiotta, Antonio Marinelli, Christos Markou, Lilian Martin, Juan Martínez-Mora, Agnese Martini, Fabio Marzaioli, Stefano Mastroianni, Safaa Mazzou, Karel Melis, Gennaro Miele, Pasquale Migliozzi, Emilio Migneco, Piotr Mijakowski, Luis Miranda Palacios, Carlos Mollo, Mauro Morganti, Michael Moser, Abdelilah Moussa, Rasa Muller, David Muñoz Pérez, Paolo Musico, Mario Musumeci, Lodewijk Nauta, Sergio Navas, Carlo Nicolau, Brian Fearraigh, Mitchell O’Sullivan, Mukharbek Organokov, Angelo Orlando, Juan Palacios González, Gogita Papalashvili, Riccardo Papaleo, Cosimo Pastore, Alice Păun, Gabriela Păvălaş, Giuliano Pellegrini, Carmelo Pellegrino, Mathieu Perrin-Terrin, Paolo Piattelli, Camiel Pieterse, Konstantinos Pikounis, Ofelia Pisanti, Chiara Poirè, Vlad Popa, Thierry Pradier, Gerd Pühlhofer, Sara Pulvirenti, Omphile Rabyang, Fabrizio Raffaelli, Nunzio Randazzo, Soebur Razzaque, Diego Real, Stefan Reck, Giorgio Riccobene, Marc Richer, Stephane Rivoire, Alberto Rovelli, Francisco Salesa Greus, Dorothea F. Samtleben, Agustin Sánchez Losa, Matteo Sanguineti, Andrea Santangelo, Domenico Santonocito, Piera Sapienza, Jan-Willem Schmelling, Jutta Schnabel, Johannes Schumann, Jordan Seneca, Irene Sgura, Rezo Shanidze, Ankur Sharma, Francesco Simeone, Anna Sinopoulou, Bernardino Spisso, Maurizio Spurio, Dimitris Stavropoulos, Jos Steijger, Simona Stellacci, Mauro Taiuti, Yahya Tayalati, Enrique Tenllado, Tarak Thakore, Steven Tingay, Ekaterini Tzamariudaki, Dimitrios Tzanetatos, Veronique Van Elewyck, George Vasileiadis, Federico Versari, Salvo Viola, Daniele Vivolo, Gwenhael de Wasseige, Jörn Wilms, Rafał Wojaczyński, Els de Wolf, Dmitry Zaborov, Sandra Zavatarelli, Angela Zegarelli, Daniele Zito, Juan de Dios Zornoza, Juan Zúñiga, Natalia Zywucka
The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machine.
Annarita Margiotta, Antonio Marinelli, Christos Markou, Gregory Martignac, Lilian Martin, Juan Martínez-Mora, Agnese Martini, Fabio Marzaioli, Safaa Mazzou, Rosa Mele, Karel Melis, Pasquale Migliozzi, Emilio Migneco, Piotr Mijakowski, Luis Miranda, Carlos Mollo, Mauro Morganti, Michael Moser, Abdelilah Moussa, Rasa Muller, Paolo Musico, Mario Musumeci, Lodewijk Nauta, Sergio Navas, Carlo Nicolau, Christine Nielsen, Brian Fearraigh, Mukharbek Organokov, Angelo Orlando, Gogita Papalashvili, Riccardo Papaleo, Cosimo Pastore, Gabriela Păvălaş, Giuliano Pellegrini, Carmelo Pellegrino, Mathieu Perrin-Terrin, Paolo Piattelli, Camiel Pieterse, Konstantinos Pikounis, Ofelia Pisanti, Chiara Poirè, Georgia Polydefki, Vlad Popa, Maarten Post, Thierry Pradier, Gerd Pühlhofer, Sara Pulvirenti, Liam Quinn, Fabrizio Raffaelli, Nunzio Randazzo, Antonio Rapicavoli, Soebur Razzaque, Diego Real, Stefan Reck, Jonas Reubelt, Giorgio Riccobene, Marc Richer, Louis Rigalleau, Alberto Rovelli, Ilenia Salvadori, Dorothea F. Samtleben, Agustin Sánchez Losa, Matteo Sanguineti, Andrea Santangelo, Domenico Santonocito, Piera Sapienza, Jan-Willem Schmelling, Jutta Schnabel, Virginia Sciacca, Jordan Seneca, Irene Sgura, Rezo Shanidze, Ankur Sharma, Francesco Simeone, Anna Sinopoulou, Bernardino Spisso, Maurizio Spurio, Dimitris Stavropoulos, Jos Steijger, Simona Stellacci, Bruno Strandberg, Dominik Stransky, Mauro Taiuti, Yahya Tayalati, Enrique Tenllado, Tarak Thakore, Paul Timmer, Steven Tingay, Ekaterini Tzamarias, Dimitrios Tzanetatos, Veronique Van Elewyck, Federico Versari, Salvo Viola, Daniele Vivolo, Gwenhael de Wasseige, Jörn Wilms, Rafał Wojaczyński, Els de Wolf, Dmitry Zaborov, Angela Zegarelli, Juan Zornoza, Juan Zúñiga, Vasilis Panagopoulos, Sebastiano Aiello, Fabrizio Ameli, Michel Andre, Giorgos Androulakis, Marco Anghinolfi, Gisela Anton, Miquel Ardid, Julien Aublin, Christos Bagatelas, Giancarlo Barbarino, Bruny Baret, Suzan Basegmez du Pree, Anastasios Belias, Meriem Bendahman, Edward Berbee, Ad van den Berg, Vincent Bertin, Vincent van Beveren, Simone Biagi, Andrea Biagioni, Matthias Bissinger, Pascal Bos, Jihad Boumaaza, Simon Bourret, Mohammed Bouta, Gilles Bouvet, Mieke Bouwhuis, Cristiano Bozza, Horea Brânzaş, Max Briel, Marc Bruchner, Ronald Bruijn, Jurgen Brunner, Ernst-Jan Buis, Raffaele Buompane, Jose Busto, David Calvo, Antonio Capone, Silvia Celli, Mohamed Chabab, Nhan Chau, Silvio Cherubini, Vitaliano Chiarella, Tommaso Chiarusi, Marco Circella, Rosanna Cocimano, Joao A. Coelho, Alexis Coleiro, Marta C. Molla, Stephane Colonges, Rosa Coniglione, Paschal Coyle, Alexandre Creusot, Giacomo Cuttone, Antonio D’Amico, Antonio D’Onofrio, Richard Dallier, Mauro De Palma, Irene Di Palma, Antonio Díaz, Didac Diego-Tortosa, Carla Distefano, Alba Domi, Roberto Donà, Corinne Donzaud, Damien Dornic, Manuel Dörr, Mora Durocher, Thomas Eberl, Thijs van Eeden, Imad El Bojaddaini, Hassnae Eljarrari, Dominik Elsaesser, Alexander Enzenhöfer, Paolo Fermani, Giovanna Ferrara, Miroslav Filipovic, Luigi A. Fusco, Deepak Gajanana, Tamas Gal, Alfonso Garcia Soto, Fabio Garufi, Lucio Gialanella, Emidio Giorgio, Sara Gozzini, Rodrigo Gracia, Kay Graf, Dario Grasso, Timothee Grégoire, Giuseppe Grella, Daniel Guderian, Carlo Guidi, Steffen Hallmann, Hassane Hamdaoui, Hans van Haren, Aart Heijboer, Amar Hekalo, Universitat de València Hernández-Rey, Jannik Hofestädt, Feifei Huang, Enrique Santiago, Giulia Illuminati, Clancy James, Peter Jansweijer, Martijn Jongen, Maartin de Jong, Paul de Jong, Matthias Kadler, Piotr Kalaczyński, Oleg Kalekin, Uli Katz, Nafis Khan Chowdhury, Frits van der Knaap, Els N. Koffeman, Paul Kooijman, Antoine Kouchner, Michael Kreter, Vladimir Kulikovskiy, Robert Lahmann, Giuseppina Larosa, Remy Le Breton, Francesco Leone, Emanuele Leonora, Giuseppe Levi, Massimiliano Lincetto, Miles Lindsey Clark, Alessandro Lonardo, Fabio Longhitano, Daniel Lopez-Coto, Giuliano Maggi, Jerzy Mańczak, Karl Mannheim
The KM3NeT research infrastructure being built at the bottom of the Mediterranean Sea will host water-Cherenkov telescopes for the detection of cosmic neutrinos. The neutrino telescopes will consist of large volume three-dimensional grids of optical modules to detect the Cherenkov light from charged particles produced by neutrino-induced interactions. Each optical module houses 31 3-in. photomultiplier tubes, instrumentation for calibration of the photomultiplier signal and positioning of the optical module, and all associated electronics boards. By design, the total electrical power consumption of an optical module has been capped at seven Watts. We present an overview of the front-end and readout electronics system inside the optical module, which has been designed for a 1-ns synchronization between the clocks of all optical modules in the grid during a life time of at least 20 years.
The quality of SiFAP (Silicon Fast Astronomical Photometer) at the TNG has already shown its ability to easily detect optical pulses from transitional millisecond pulsars and from other slower neutron stars. Up to now the photometer based on Silicon Photo Multipliers manufactured by Hamamatsu Photonics (MPPC, Multi Pixel Photon Counter) was mounted (on and manually aligned with) a MOS mask at the F/11 focal plane of the telescope. In order to have a more versatile instrument with the possibility to remotely center and point several targets during the night we have decided to build a new mechanical support for the MPPCs and mount it on the Namsyth Interface (NI), where originally OIG and later GIANO were hosted. The MPPC module devoted to observe the target will be placed at the center of the FoV (on-axis), while the reference signal will be collected from a peripheral star in the FoV (Field of view) by means of the MPPC module that will be set at this position by a combination of a linear stage movement and a derotator angle. At the same time we have introduced the option for a polarimetric mode, with a 3rd MPPC module and a polarizing cube beam-splitter that separates the states between this and the on axis MPPC. SiFAP has been developed with 3 independent custom electronic chains for data acquisition, exploiting the 3 different outputs (analog, digital, USB pre-processed) provided by the MPPCs modules. The electronic chain fed by the analog output is able to tag a single photon ToA (Time of Arrival) with a time resolution of 25 ns, while the remaining electronic chains can integrate the signal into time bins from 100 ms down to 20 μs. The absolute time is provided by a GPS unit with a time resolution of 25 ns at 50% of the rising edge of the 1PPS (1 Pulse Per Second) signal which is linked to the UTC (Universal Time Coordinated). Apart from the versatility with the remotely controlled on sky configuration of the MPPCs, the mounting of SiFAP2 at the NI allows for a permanent hosting of the instrument, readily available for observations. The new polarimetric mode will then offer other scientific opportunities that have not been explored so far in high-temporal resolution astronomy.
The Multi-AO Imaging Camera for Deep Observations (MICADO), a first light instrument for the 39 m European Extremely Large Telescope (E-ELT), is being designed and optimized to work with the Multi-Conjugate Adaptive Optics (MCAO) module MAORY (0.8-2.5 μm). The current concept of the MICADO instrument consists of a structural cryostat (2.1 m diameter and 2 m height) with the wavefront sensor (WFS) on top. The cryostat is mounted via its central flange with a direct interface to a large 2.5-m-diameter high-precision bearing, which rotates the entire camera (plus wavefront sensor) assembly to allow for image derotation without individually moving optical elements. The whole assembly is suspended at 3.6 m above the E-ELT Nasmyth platform by a Hexapod-type support structure. We describe the design of the MICADO derotator, a key mechanism that must precisely rotate the cryostat/SCAO-WFS assembly around its optical axis with an angular positioning accuracy better than 10 arcsec, in order to compensate the field rotation due to the alt-azimuth mount of the E-ELT. Special attention is being given to simulate the performance of the derotator during the design phase, in which both static and dynamics behaviors are being considered in parallel. The statics flexure analysis is done using a detailed Finite Element Model (FEM), while the dynamics simulation is being developed with the mathematical model of the derotator implemented in Matlab/Simulink. Finally, both aspects must be combined through a realistic end-to-end model. The experiment designed to prove the current concept of the MICADO derotator is also presented in this work.
This article presents a proposal aimed at investigating the technical feasibility and the scientific capabilities of high
contrast cameras to be implemented at LBT. Such an instrument will fully exploit the unique LBT capabilities in
Adaptive Optics (AO) as demonstrated by the First Light Adaptive Optics (FLAO) system, which is obtaining excellent
results in terms of performance and reliability. The aim of this proposal is to show the scientific interest of such a
project, together with a conceptual opto-mechanical study which shows its technical feasibility, taking advantage of the
already existing AO systems, which are delivering the highest Strehl experienced in nowadays existing telescopes.
Two channels are foreseen for SHARK, a near infrared channel (2.5-0.9 um) and a visible one (0.9 – 0.6 um), both
providing imaging and coronagraphic modes. The visible channel is equipped with a very fast and low noise detector
running at 1.0 kfps and an IFU spectroscopic port to provide low and medium resolution spectra of 1.5 x 1.5 arcsec
fields.
The search of extra solar giant planets is the main science case and the driver for the technical choices of SHARK, but
leaving room for several other interesting scientific topics, which will be briefly depicted here.
Usually observational astronomy is based on direction and intensity of radiation considered as a function of wavelength
and time. Despite the polarisation degree of radiation provides information about asymmetry, anisotropy and magnetic
fields within the radiative source or in the medium along the line of sight, it is commonly ignored. Because of the
importance of high resolution spectropolarimetry to study a large series of phenomena related to the interaction of
radiation with matter, as in stellar atmospheres or more generally stellar envelopes, we designed and built a dual beam
polarimeter for HARPS-N that is in operation at the Telescopio Nazionale Galileo. Since the polarisation degree is
measured from the combination of a series of measurements and accuracy is limited by the instrumental stability, just the
great stability (0.6 m/s) and spectral resolution (R=115000) of the HARPS-N spectrograph should result in an accuracy
in the measurements of Stokes parameters as small as 0.01%. Here we report on the design, realization, assembling,
aligning and testing of the polarimetric unit whose first light is planned in August 2014.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.