In this submission, we report on the results of spectroscopic studies of charge carrier dynamics in colloidal In1-xGaxP quantum dots (QDs) with low levels of Ga doping (x~1%). These QDs exhibit large global Stokes shift of fluorescence (up to 300 meV) along with high emission yield (up to 30% in solution and 25% in films under blue excitation at 300 K) after post-synthesis photo-chemical treatment. In order to reveal the nature of large fluorescence Stokes shift and study the band-edge carriers dynamics, we performed time-resolved measurements of emission and photo-induced absorption changes in QDs with different sizes and surface passivation. The work was focused on the studies of differences between QDs subjected to photochemical surface passivation and bare nanoparticles. Time-resolved absorption spectroscopy indicates that holes' trapping strongly depends on passivation of surface trap states and can even suppress Auger multiparticle recombination in poorly passivated nanoparticles. Transient fluorescence measurements in well-passivated nanoparticles demonstrate that at short delays (<2 ns), emission Stokes shift is almost twice smaller than in steady-state measurements and matches the emission band in unpassivated QDs. At longer delays, time-resolved emission matches the spectra obtained with continuous wave (CW) excitation. We propose that initially photoluminescence occurs from quantum-confined state and subsequent hole relaxation onto surface/interface sites gives rise to emission with large global Stokes shift. In poorly passivated QDs, holes escape quickly to deep-trap states that leads to formation of low-efficiency broad emission band red-shifted with respect to the excitonic PL band.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.