Sb2S3 is a chalcogenide material with a heat-controlled transition from amorphous to crystalline phase. Combined with significant changes in optical properties during the transition, it is an extremely interesting and applicable material for applied IR optics. In this talk, we present nanofabricated resonant Sb2S3 pillars, showing how methodically designed metasurfaces with these structures can exhibit a wide range of optical properties across the phase change. Furthermore, we show a tunable ability to control these metasurfaces with intentional design.
Thermal regulation is essential for numerous applications across multiple industries such as the efficient temperature control of indoor facilities and the reliable operation of many electronic systems. Vanadium dioxide (VO2) is a phase change material that is well-suited for thermal regulation as a result of its ultrafast, reversible, solid-state transition at 68°C that produces a significant contrast in its infrared (IR) emissive properties. To meet application demands, VO2’s transition temperature can be tuned via doping with a reduction in temperature of ~22 °C per atomic percent tungsten (at. % W6+). However, historically this decrease in the transition temperature has coincided with a reduction in IR optical contrast between the two phases. In this investigation, we demonstrate that by patterning VO2 thin film composites with preoptimized thicknesses, a thermal regulation system with a tunable transition temperature and no significant degradation of contrast between the states is produced. Through carefully selected user-defined patterning of the undoped VO2 layer within the multilayer film, a 64% operating optical contrast was achieved across the 8 – 13 μm spectral region as compared to 42% in the as-deposited film. Additionally, at a doping level of 1.7%, the transition temperature in a VO2 thin film composite with micron-scaled patterning was reduced to 25°C while maintaining 58% emissive contrast in the 8 – 13 μm spectral region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.