The spectacular progress in controlling the electronic properties of graphene has triggered research in alternative atomically thin two-dimensional crystals. Monolayers (ML) of transition-metal dichalcogenides such as MoS2 have emerged as very promising nanostructures for optical and spintronics applications. Inversion symmetry breaking together with the large spin-orbit interaction leads to a coupling of carrier spin and k-space valley physics, i.e., the circular polarization (σ+ or σ−) of the absorbed or emitted photon can be directly associated with selective carrier excitation in one of the two nonequivalent K valleys (K+ or K−, respectively).
We have investigated the spin and valley properties for both neutral and charged excitons in transition metal dichalcogenide monolayer MoS2, MoSe2 and WSe2 with cw and time-resolved polarized photoluminescence spectroscopy [1,2]. The key role played by exciton exchange interaction will be presented [3]. We also demonstrate that the optical alignment of excitons (“exciton valley coherence”) can be achieved following one or two photon excitation [1,4].
Finally recent results on magneto-photoluminescence spectroscopy on MoSe2 and WSe2 in Faraday configuration up to 9 T will be presented; the results will be discussed in the framework of a k.p theory [5].
[1] G. Wang et al, PRL 114, 97403 (2015)
[2] G. Wang et al, Nature Com. 6, 10110 (2015)
[3] J. P. Echeverry, ArXiv 1601.07351 (2016)
[4] G. Wang et al, PRL 115, 117401 (2015)
[5] G. Wang et al, 2D Mat. 2, 34002 (2015)
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.