We are developing monolithic active pixel sensors, x-ray SOIPIXs based on a Silicon-On-Insulator CMOS technology. Its event trigger output function offers a high time resolution better than ~10 usec. (1) In 2022-23, we and evaluated large sensors, XRPIX-X, with a pixel array size of 14mm x 22mm. We report its design and the results of the performance evaluation. (2) We are developing "Digital X-ray SOIPIXs" for satellite use, featuring on-chip ADCs, DACs, and BGRs for noise robustness. An on-chip clock pattern generator is also included to simplify the readout digital circuits. (3) XRPIXs are increasingly being utilized in various scientific applications beyond x-ray astronomy, and a brief introduction will be provided.
The X-Ray Imaging and Spectroscopy Mission (XRISM) project at JAXA officially started in 2018. Following the development of onboard components, the proto-flight test was conducted from 2021 to 2023 at JAXA Tsukuba Space Center. The spacecraft was launched from JAXA Tanegashima Space Center on September 7, 2023 (JST), and onboard components, including the science instruments, were activated during the in-orbit commissioning phase. Following the previous report in 2020, we report the spacecraft ground tests, the launch operation, in-orbit operations, and the status and plan of initial and subsequent guest observations.
Chronos is a X-ray observatory concept capable of “hour-level” follow up observations of transient alerts in 2030s’ multi-messenger astronomy, with 0.3–40+ keV wide X-ray band-width and 250–300 nm ultra-violet (UV) coverage. The mission has a good hard X-ray imaging spectroscopy with > 9′ field of view, the soft X-ray imager with > 30′ field of view, and the UV imager with > 7° field of view. Aiming at launch in mid-2030s, the mission is designed to provide wide-band spectroscopy of time dependent high-energy phenomena. The low background and large effective area in the hard X-ray band also make it good at observing diffuse hard X-ray emissions, such as many TeV sources which will be newly found in 2030s.
XRISM (X-ray Imaging and Spectroscopy Mission) is an X-ray astronomy satellite developed in collaboration with JAXA, NASA and ESA. It successfully launched on Sept. 7, 2023. Two complementary X-ray telescopes, Resolve and Xtend are on-board XRISM. Resolve uses the pixelized X-ray micro calorimeter developed by NASA/GSFC and has very high energy resolution of 5 eV. On the other hand, Xtend uses an X-ray CCD camera as its focal plane detector which has high spatial resolution and a wide field of view. We evaluated the performance of the X-ray Mirror Assembly (XMA) for Xtend using data observed during the commissioning and PV phases of XRISM. To verify the imaging performance, the Point Spread Functions (PSF) generated from the observations of NGC 4151 and PDS 456 were compared with the ground-calibration results. The results show that the imaging performance of Xtend-XMA is not significantly different from that of the ground calibration, and that it meet the requirement. The effective area was verified by comparing the results of simultaneous observations of 3C 273 by XRISM and four X-ray astronomy satellites (Chandra, XMM-Newton, NuSTAR, and Swift). The results of the fitting of the X-ray spectrum of Xtend show no significant difference from the results of other satellites, suggesting the effective area used for fitting is correct. The on-axis position on the detector was estimated from the intensity of the Abell 2029 observations at four off-axis angles. The on-axis is about 40 arcsec away from the aim point, and the decrease in effective area at the aim point is less than 1%. Stray light observations of the Crab Nebula at 60 arcmin off-axis were obtained at two different satellite roll angles. The stray light intensity obtained at each roll angle was significantly different, verifying the dependence of the stray light on the roll angle.
The Soft X-ray Imager (SXI) is an X-ray CCD camera of the Xtend system onboard the X-Ray Imaging and Spectroscopy Mission (XRISM), which was successfully launched on September 7, 2023 (JST). During ground cooling tests of the CCDs in 2020/2021, using the flight-model detector housing, electronic boards, and a mechanical cooler, we encountered an unexpected issue. Anomalous charges appeared outside the imaging area of the CCDs and intruded into the imaging area, causing pulse heights to stick to the maximum value over a wide region. Although this issue has not occurred in subsequent tests or in orbit so far, it could seriously affect the imaging and spectroscopic performance of the SXI if it were to happen in the future. Through experiments with non-flight-model detector components, we successfully reproduced the issue and identified that the anomalous charges intrude via the potential structure created by the charge injection electrode at the top of the imaging area. To prevent anomalous charge intrusion and maintain spectroscopic performance that satisfies the requirements, even if this issue occurs in orbit, we developed a new CCD driving technique. This technique is different from the normal operation in terms of potential structure and its changes during imaging and charge injection. In this paper, we report an overview of the anomalous charge issue, the related potential structures, the development of the new CCD driving technique to prevent the issue, the imaging and spectroscopic performance of the new technique, and the results of investigation experiments to identify the source of the anomalous charges.
Xtend is one of the two telescopes onboard the X-ray imaging and spectroscopy mission (XRISM), which was launched on September 7th, 2023. Xtend comprises the Soft X-ray Imager (SXI), an X-ray CCD camera, and the X-ray Mirror Assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. A large field of view of 38′ × 38′ over the energy range from 0.4 to 13 keV is realized by the combination of the SXI and XMA with a focal length of 5.6 m. The SXI employs four P-channel, back-illuminated type CCDs with a thick depletion layer of 200 μm. The four CCD chips are arranged in a 2×2 grid and cooled down to −110°C with a single-stage Stirling cooler. Before the launch of XRISM, we conducted a month-long spacecraft thermal vacuum test. The performance verification of the SXI was successfully carried out in a course of multiple thermal cycles of the spacecraft. About a month after the launch of XRISM, the SXI was carefully activated and the soundness of its functionality was checked by a step-by-step process. Commissioning observations followed the initial operation. We here present pre- and post-launch results verifying the Xtend performance. All the in-orbit performances are consistent with those measured on ground and satisfy the mission requirement. Extensive calibration studies are ongoing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.