Currently the diode laser is widely used in the field of optoelectronics, especially in precise measurement based on laser-interferometry. Laser wavelength stability is a property that critical to the measurement. Since the laser wavelength is easy to be influenced by the environment and drive current, real-time monitoring and calibration of diode laser wavelength is extraordinary important for interferometry. In this paper, a real-time wavelength monitoring and calibration system for diode laser based interference measurement were developed. The experiment system was built and conducted to verify the feasibility of the system.
As for chromatic confocal sensor system with limited computational capacity, a fast peak extraction algorithm with considerate accuracy is in urgent demand. However, current peak extraction algorithms such as the centroid algorithm (CA) and nonlinear fitting algorithms can not balance the accuracy and computational efficiency. Thus, we propose an accurate peak extraction algorithm with good computational efficiency called corrected differential fitting algorithm (CDFA). At first, the differential signal derived from the original axial response signal is linearly fitted for initial peak extraction. Then corresponding systematic error of this linear fitting operation is analyzed using a first-order linear nonhomogeneous differential equation. At last, error compensation, that is, the solution to this equation is implemented with an introduction of "sum differences of sampling intensity". The performance of CDFA is compared with two conventional peak extraction algorithms including the CA and Gaussian fitting algorithm (GFA) using Monte Carlo simulations. CDFA is found to have a comparable accuracy performance with GFA while have a much higher computational efficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.