The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.
3D printing is a high freedom fabrication technique. Any components, which designed by 3D design software or scanned from real parts, can be printed. The printing materials include metals, plastics and biocompatible materials etc. Especially for those high transmission components used in optical system or biomedical field can be printed, too. High transmission lens increases the performances of optical system. And high transmission cover or shell using in biomedical field helps observers to see the structures inside, such as brain, bone, and vessels. But the surface of printed components is not transparent, even the inside layer is transparent. If we increase the transmittance of surface, the components which fabricated by 3D printing process could have high transmission. In this paper, we using illuminating and polishing methods to improve the transmittance of printing surface. The illuminating time is the experiment parameters in illuminating method. The roughness and transmission of printing components are the evaluating targets. A 3D printing machine, Stratasys Connex 500, has been used to print high transmittance components in this paper. The surface transmittance of printing components is increasing above 80 % by polishing method.
The design, tolerance sensitivity reduction, assembly, and optical bench test for an oil-immersion microscope objective with long working distance employed in a lattice light-sheet microscope is presented in this paper. In this application, the orthogonal excitation and detection objectives are dipped in an oil medium. The excitation objective focuses the incident laser beam to generate fluorescence on specimen for collecting by detection objective. The excitation objective is custom-designed to meet the requirement specification such as oil-immersion, the long working distance, and numerical aperture (NA) of 0.5, etc. To produce an acceptable point spread function (PSF) for effective excitation, the performance of the objective needs to be close to diffraction limit. Because the tolerance of the modulation transfer function (MTF) is more and more sensitive at higher spatial frequency, it is extremely critical to keep the performance after manufacture. Consequently, an insensitive optical design is very important for relaxing tolerance. We compare the design with and without tolerance sensitivity reduction, and the as-built MTF shows the result. Furthermore, the method for sensitivity reduction is presented. The opto-mechanical design and assembly method are also discussed. Eventually, the objective with five spherical lenses was fabricated. In optical bench test, the depth of the oil is sensitive to MTF, and it leads to the complicated adjustment. For solving this issue, we made an index-matching lens to replace oil for measurement easily. Finally, the measured MTF of the excitation objective can accomplish the requirement specification and successfully employed in a lattice light-sheet microscope.
Glare is caused by both direct and indirect light sources and discomfort glare produces visual discomfort, annoyance, or loss in visual performance and visibility. Direct glare is caused by light sources in the field of view whereas reflected glare is caused by bright reflections from polished or glossy surfaces that are reflected toward an individual. To improve visual comfort of our living environment, a portable inspection system to estimate direct glare of various commercial LED modules with the range of color temperature from 3100 K to 5300 K was developed in this study. The system utilized HDR images to obtain the illumination distribution of LED modules and was first calibrated for brightness and chromaticity and corrected with flat field, dark-corner and curvature by the installed algorithm. The index of direct glare was then automatically estimated after image capturing, and the operator can recognize the performance of LED modules and the possible effects on human being once the index was out of expecting range. In the future, we expect that the quick-response smart inspection system can be applied in several new fields and market, such as home energy diagnostics, environmental lighting and UGR monitoring and popularize it in several new fields.
This paper presents the illumination uniformity study on the reading area for a well-designed reflective LED lighting module by placing diffuser plate with optical simulation technique. The investigation for the performance of intensity and uniformity was performed and discussed by changing various curvatures of diffuser plate with and without microstructures to reflect and spread light. Due to the development of microstructures on diffuser plate, the light intensity distribution was uniformed on the reading area. In addition, the diffusion and spreading effect from a curved surface with microstructures was better than that without curvature or microstructures. The illumination uniformity was strongly influenced by the shape of microstructure on reflective diffuser plate. The optimal design with cylinder-shape microstructure on the lampshade had better performance in this study; the illumination uniformity was increased from 17 % to 69 % and the enhancement was 75 %. A well-designed diffuser plate model was fabricated by CNC machine and the deviations between experimental and simulated illumination results for maximum intensity and uniformity were 7.4 % and 8.7 %, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.