In this study, we design and fabricate a hollow optical waveguide with omni-directional reflectors in silicon-based materials. A groove is etched by inductive coupled plasma (ICP) with photolithographic process on (100) silicon wafer. The width of the groove is varied from 3.5 to 5.5 micrometer for different waveguide designs. The depth of the groove is 1.2 micrometers. Plasma enhanced chemical vapor deposition is used to deposit six pairs of Si/SiO2(0.111/0.258micrometers) on the samples. Finally, the top of the sample is covered by another silicon substrate on which the identical omni-directional reflector has been also deposited. By wafer bonding technology, the top omni-directional reflector can be combined with the groove to form a hollow optical waveguide. Light with the wavelength at 1.55 micrometers can be confined by the omni-directional reflectors at single mode operation. Polarization independent hollow optical waveguides can be achieved with this fabrication process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.