The availability of high quality laser diode based lasers in the visible range has boosted up many bio-medical applications like Confocal Microscopy and Flow Cytometry. These new lasers are enabling high resolution close to the diffraction limit and improved sensitivity in many biological and medical applications. We explain the most important performance parameters of these lasers which are required to achieve best test results and excellent resolution by using suited laser sources and accessories for these two applications. Some of these parameters are very low noise, low beam pointing, single TEM00 mode like beam quality for diffraction limited spots and the beam shape. Beside the laser sources the use of single mode fibers is essential to achieve excellent laser beam quality and tailored beam shapes in combination with very low beam pointing for highest resolution and superior test results. The paper will explain the important role of Spatial Filtering and how it is working based on apodization in the Fourier space.
Novel liquid crystal-based integrated optical devices with >140GHz electrical tuning are presented. Initial results with Bragg wavelength tuning covering five 25GHz WDM channel spacing have been achieved with 170V (peak-to-peak) sinusoidal voltages applied across electro-patterned ITO-covered glass electrodes placed 60μm apart. These prototype devices were fabricated using direct UV grating writing, with an evanescent field coupling into a liquid crystal overlay through an etched window. Two distinct threshold conditions are observed, manifesting only during the increase of supply voltage and forming a hysteretic tuning curve. The secondary threshold which takes place at higher voltages has never been reported before. We believe these threshold points are related to the formation and bleaching of disclination lines. Geometric and effective index consideration could not explain the similar tuning behaviour displayed by both TE and TM polarised light.
Second harmonic generation via periodically-poled nonlinear materials offers an efficient means of generating high-quality
visible light at wavelengths that would be otherwise unattainable with traditional laser sources. While this
technology has the potential for implementation in many mass-industrial applications, temperature stability
requirements, often as restrictive as 0.1°C, can make packaging with a pump source problematic. In this work we are
investigating the use of synthesised response PPLN gratings to create crystals that are better suited to visible SHG. Our
route towards addressing this issue is to convert the standard sinc-shaped temperature-tuning response of a uniform
grating to a flat-top temperature tuning function with widths of up to several degrees. We have achieved a
computationally efficient means of designing such gratings with a required temperature tuning profile based on a
simulated annealing algorithm using repeated local changes of grating layout and subsequent Bloembergen-style
analysis of the second harmonic, successive iterations of which quickly lead to the desired temperature tuning profile.
Using our high fidelity poling technique we have fabricated synthesised response PPLN with precise placement of poled
domains in Lithium Niobate based on the designs from our mathematical models. Measurements on these initial devices
provide more than 4°C flat-top temperature stability, albeit with a corresponding loss in operational efficiency. Our aim
is to implement improved designs in magnesium-doped Lithium Niobate for packaging with near-room temperature
diode-based pump sources, as could be applied towards RGB TV and projector applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.