KEYWORDS: Sensors, RGB color model, Biological and chemical sensing, Gas sensors, Gases, Industrial chemicals, Chemical compounds, Time metrology, Cameras, Calibration, Arsenic, Glasses, Sensor performance
Colorimetric sensors based on color-changing dyes offer a convenient approach for the quantitative measurement of gases. An integrated, mobile colorimetric sensor can be particularly helpful for occasional gas measurements, such as informal air quality checks for bad odors. In these situations, the main requirement is high availability, easy usage, and high specificity towards one single chemical compound, combined with cost-efficient production. In this contribution, we show how a well stablished colorimetric method can be adapted for easy operation and readout, making it suitable for the untrained end user.
As an example, we present the use of pH indicators for the selective and reversible detection of NH3 in air (one relevant gas contributing to bad odors) using gas-sensitive layers dip coated on glass substrates. Our results show that the method can be adapted to detect NH3 concentrations lower than 1 ppm, with measure-to-result times in the range of a few minutes. We demonstrate that the color measurements can be carried out with the optical signals of RGB sensors, without losing quantitative performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.