We have characterized the 24Mg optical frequency standard at the Institute of Quantum Optics (IQ), Hanover, using a
clock laser at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, via a noise compensated 73 km fiber
link and present preliminary results for the stability of the Mg standard. The stability of the clock laser (λ = 657 nm) is
transferred with a femtosecond frequency comb to a telecommunication laser at λ = 1542 nm. The signal is then
transmitted from PTB through the fiber link to IQ. A second comb at IQ (the remote end) is used to compare the
transmitted laser frequency with that of the Mg clock laser λ = 914 nm. The frequency ratio of the clock lasers νMg/νCa
shows a relative instability < 10-14 at 1 s. The upper limit for the contribution of the fiber link to the frequency instability
is measured by connecting another optical fiber following the same 73 km route at Hanover computer center. The
comparison performed at PTB between the local and the transmitted signal after a round trip length of 146 km showed a
relative uncertainty below 1 x 10-19 and a short term instability σy(τ)= 3.3 x 10-15 / (τ/s).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.