Modern handheld structured light scanners show potential in the field of medical imaging and image-guided surgery. For the effective use of such scanners as a rapid registration tool, anatomical regions of interest must be identified. The purpose of this study is to investigate the use of machine learning to classify various anatomical tissues using the textural information collected from structured light scanners. We performed an ex vitro study using three fresh frozen knee specimens. Each specimen underwent multiple stages of dissection to reveal different anatomical tissues. At each stage of dissection, the specimens were scanned with a structured light scanner (Artec Spider, Artec Group, Palo Alto, USA). Using the texture information of the scanned model, a domain expert manually segmented four tissues of interest: muscle, tendon, cartilage, and bone. The RGB and HSL values of the data points in the manually segmented models were extracted for use in training and evaluating a random forest classifier. Our trained random forest classifier obtained a four-class classification accuracy of 77% and a three-class classification accuracy of 82%. The results of this study demonstrate the feasibility of a random forest to aid in semi-automatic or automatic segmentation of anatomical tissues using only textural information. Further experiments with in vivo tissues will need to be done to validate the application of such classifiers in an intraoperative environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.