Feature-based registration algorithms can be used to establish spatial correspondence between two image. Therefore, anatomical landmarks such as the breast boundary, pectoral muscle, nipple, duct and vessels need to be considered. The aim of this paper is to introduce a new approach which combine the pectoral muscle segmentation and nipple location, considering mammography quality assumptions. Pectoral muscle is initialized as a straight line from the top of the image to the nipple level. Afterwards, both pectoral muscle boundary and nipple position are optimized using an iterative approach. The results show that the nipple is localized on the contour of the corresponding area (error smaller than 10 mm) while the Dice’s coefficient of the pectoral muscle segmentation is equal to 0.84 ± 0.12 using a straight line which is improved using a Chan-Vese active contour approach, reaching 0.87 ± 0.13. Our algorithm is easily generalized and portable to a different mammographic system since it barely depends on images statistics -i.e. pixel intensity values-, and is just based on geometrical considerations.
Medical image synthesis has gained a great focus recently, especially after the introduction of Generative Adversarial Networks (GANs). GANs have been used widely to provide anatomically-plausible and diverse samples for augmentation and other applications, including segmentation and super resolution. In our previous work, Deep Convolutional GANs were used to generate synthetic mammogram lesions, masses mainly, that could enhance the classification performance in imbalanced datasets. In this new work, a deeper investigation was carried out to explore other aspects of the generated images evaluation, i.e., realism, feature space distribution, and observer studies. t-Stochastic Neighbor Embedding (t-SNE) was used to reduce the dimensionality of real and fake images to enable 2D visualisations. Additionally, two expert radiologists performed a realism-evaluation study. Visualisations showed that the generated images have a similar feature distribution of the real ones, avoiding outliers. Moreover, the Receiver Operating Characteristic (ROC) study showed that the radiologists could not, in many cases, distinguish between synthetic and real lesions, giving accuracies between 51% and 59% using a balanced sample set.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.