Wavefront-based aspheric metrology techniques generally require a compensation lens to compensate for the primary aberrations. To expand the adaptability of the surface to be tested, this paper proposes and demonstrates a partial null compensator structure that can switch between the front and back mirror sides. The presented compensator comprises two sets of off-axis reflecting parts and a pre-compensation spheric lens in an integrated structure. An appropriate off-axis reflection combination mode can be selected for the range of the conic coefficient of the measured surface. With the simulation result, the presented compensator can adapt to a large-scale variation of the surface conic coefficient K from -10 to +10. The average residual wavefront aberration is no more than 1λ (PV) and 1/4 λ (RMS). The results show that the proposed structure can be efficiently applied to wavefront detection or interferometer for data post-processing.
Infrared polarization imaging can achieve faster perception speed and higher identification accuracy, which has been widely applied in diverse areas such as space remote sensing, biomedicine, and object detection. Limited by the aperture of the lens, the single-aperture imaging system can hardly meet the needs of high-resolution and multi-polarization imaging simultaneously. Aiming at achieving the properties of high-resolution, high-integration, and multi-channel performance, a sub-aperture infrared polarization imaging system based on freeform surfaces is proposed and demonstrated. The general scheme of the polarization imaging system mainly consists of a common aperture structure, a sub-aperture imaging group, and a relay imaging group. To compress the beam aperture, a Kepler telescope configuration is employed to build up the imaging objective. The field diaphragm is set at the primary image plane to effectively eliminate stray light. Polarizers with different orientations are added to the split aperture imaging group to form four polarization state channels. To reduce the assembly errors of the sub-aperture system, a freeform surface lens is utilized to replace the lens group in the multi-channel. The freeform surface profile uses the "XY polynomial" with eight coefficients. A diaphragm array is arranged on the front surface of the sub-aperture system, which is used to avoid the intersection between the image planes of different channels. To match with the cooled detector, the relay imaging group is designed as a finite conjugate structure with a magnification of -0.44×. The structure allows for simultaneous imaging of four infrared polarization states with the same system, and the MTF of each channel at 33lp/mm is higher than 0.45. Our research satisfies both miniaturization and engineering application requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.