Finding an effective monitoring and evaluation factor for therapeutic effect of microwave ablation is becoming a research focus. Previous MWA experiments on in vitro porcine liver found that reduced scattering coefficient ( μ's ) is an efficient optical evaluation parameter. Results indicated that μ's of normal tissue and coagulation tissue is 3-5 cm-1 and 17-19 cm-1, respectively, and μ's is highly related to the degree of thermal damage. This paper aims to validate if these results from in vitro porcine liver also applies to real tumor. Two sets of experiments were carried out with human liver tumor specimens. In the first experimental set, the tumor specimen was heated by water bath at constant temperature of 80 ℃ for 5 minutes, and μ's was obtained before and after the heating process. In the second set, another tumor specimen was heated by MWA with microwave power of 10 W for 5 min, reduced scattering coefficient and temperature changes were measured during ablation. In the first experiment, μ's value was 4.10 cm-1 before heating and increased to 17.16 cm- 1 after complete tissue protein coagulation. In the second experiment, μ's grew exponentially first and eventually stabilized. μ's values are consistent with previous experiments on in vitro porcine liver. These results also validates that the μ's values reflect the degree of thermal damage, and be captured in real-time. To sum up, μ's is an effective real-time thermal damage monitoring and evaluation factor that can be applied to real tumors.
Pedicle screw (PS) fixation has been widely used for spine diseases. Scientists and clinicians employ several approaches to navigate PS during operation. We have demonstrated the feasibility of monitoring the reduced scattering coefficient (μs′) on the trajectory of PS using near-infrared spectroscopy (NIRS). To perform the in-vitro monitoring, an NIRS measurement system was introduced and the reduced scattering coefficients of different sites in porcine pedicle were accurately deduced from the spectrum. Moreover, the changes of the reduced scattering coefficient along the different paths were studied. The results show reduced scattering coefficients on different regions of bones can be significantly distinguished. Furthermore, monitoring experiments along different paths confirmed that a reduced scattering coefficient would change versus the depth of puncture in pedicles. Thus, the proposed monitoring system based on NIRS provides a potential for guiding PS during operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.