KEYWORDS: Sensors, Homodyne detection, Signal to noise ratio, Semiconductor lasers, Signal detection, Heterodyning, Modulation, Signal processing, Telescopes, Optical fabrication
We discuss the architecture and performance of compact, robust, alignment-free, homodyne vibrometers using telecom
diode lasers as the illumination source. The technical challenges and performance of implementations using conventional
macroscopic optical components are compared with ultra-miniature micro-bench components and assembly methods.
Focused sensitivity exceeding 4.6 pm/SQRT(Hz) at 1m range, 23 pm/SQRT(Hz) at 5m range, and useful operation to
>20m have been demonstrated with COTS 1550 nm sources, 1.5 cm transmit/receive beam diameter and 32 mW
transmitted power. Vibrometer measurement bandwidth exceeds 100 kHz with current electronics. Demonstrated
performance is suitable for a variety of defense, security, and inspection applications.
The use of LiNbO3 based Volume Holographic Gratings (VHGs) to provide spectrally filtered feedback to a semiconductor laser diode was documented in the mid 1980s1, however issues with long term stability had left this technology on the sidelines. Photo-sensitive glass based VHGs do not exhibit long term aging or thermal/photo bleaching effects, and therefore have enabled a new type of External Cavity Laser (ECL). This highly manufacturable "hybrid ECL/DBR" (HECL) laser utilizes precision VHGs and has been used to create high performance lasers with spectrally tailored output. Lasers with fiber coupled output powers in excess of 4.2 W and spectral line widths of less than 0.15 nm have been demonstrated. Additionally, multi-mode lasers have been developed for High Resolution Raman Spectroscopy that exhibit spectral line widths below 0.06 nm (i.e. < 1 wavenumber) with fiber coupled output power in excess of 350 mW. The use of glass based VHGs provides HECL laser wavelength stabilization of better than 0.01 nm/oC, and allows the production of lasers at virtually any wavelength between 650 nm - 2400 nm.
In this paper we demonstrate high-power GaAs-based and InP-based superluminescent diodes (SLD) with tilted waveguides emitting in 8xx nm and 15xx nm spectral ranges respectively. The analysis of devices with different cavity lengths emphasizes the tradeoff between output power and spectral width. Power levels of about 200 mW for 820 nm SLDs and about 100 mW for 1590 nm SLDs have been demonstrated for longer cavity devices. Spectral modulation was less than 6-7% at 70-80 mW output power for both 8xx and 15xx SLDs. Simple model proposed for evaluation of spectrum modulation for both GaAs and InP devices based on semi-empirical approach is in agreement with experimental observations.
In this paper we summarize the results on the development of high power 1300 nm ridge waveguide Fabry-Perot and distributed-feedback (DFB) lasers. Improved performance of MOCVD grown InGaAsP/InP laser structures and optimization of the ridge waveguide design allowed us to achieve more than 800 mW output power from 1300 nm single mode Fabry-Perot lasers. Despite the fact that the beam aspect ratio for ridge lasers (30 degree(s) x 12 degree(s)) is higher than that for buried devices, our modeling and experiments demonstrated that the fiber coupling efficiency of about 75-80% could be routinely achieved using a lensed fiber or a simple lens pair. Fiber power of higher than 600 mW was displayed. Utilizing similar epitaxial structures and device geometry, the 1300 nm DFB lasers with output power of 500 mW have been fabricated. Analysis of the laser spectral characteristics shows that the high power DFB lasers can be separated into several groups. The single frequency spectral behavior was exhibited by about 20% of all studied DFB lasers. For these lasers, side-mode suppression increases from 45 dB at low current up to 60 dB at maximum current. About 30% of DFB lasers, at all driving currents, demonstrate multi-frequency spectra consisting of 4-8 longitudinal modes with mode spacing larger than that for Fabry-Perot lasers of the same cavity length. Both single frequency and multi frequency DFB lasers exhibit weak wavelength-temperature dependence and very low relative intensity noise (RIN) values. Fabry-Perot and both types of DFB lasers can be used as pump sources for Raman amplifiers operating in the 1300 nm wavelength range where the use of EDFA is not feasible. In addition, the single-mode 1300 nm DFB lasers operating in the 500 mW power range are very attractive for new generation of the cable television transmission and local communication systems.
Recent progress towards the realization of high-power, non- cryogenic (quasi-)cw mid-IR lasers based on the `W' configuration of the active region is reported. Type-II diodes with AlGaAsSb broadened-waveguide separate confinement regions are the first III-V interband lasers to achieve room-temperature pulsed operation at a wavelength longer than 3 micrometers . For cw operation, Tmax was 195 K and Pout equals 140 mW was measured at 77 K. Optically- pumped W lasers recently attained the highest cw operating temperatures (290 K) of any semiconductor laser emitting in the 3 - 6 micrometers range. For a (lambda) equals 3.2 micrometers device at 77 K, the maximum cw output power was 0.54 W per uncoated facet. In order to maximize the absorption of the pump in the active region, an optical pumping injection cavity structure was used to create an etalon cavity for the 2.1 micrometers pump beam. The pulsed incident pump intensity at threshold was only 8 kW/cm2 at 300 K for this edge- emitting mid-IR laser. The differential power conversion efficiency was 9% at 77 K and 4% at 275 K, which indicates promising prospects for achieving high cw output powers at TE-cooler temperatures following further optimization.
In this work the spectral characteristics of a new type of mid-infrared diode laser are discussed and an application for CO trace gas detection is demonstrated. The InGaAsSb/AlGaAsSb QW diode lasers operating in the spectral range of 2.0 - 2.7 micrometer in continuous wave (CW) regime at room temperature (RT) were developed last year. Earlier, the spectral range of RT CW operation for diode lasers was limited by 2.0 - 2.1 micrometer. The extension of wavelength to 2.7 micrometer was achieved for InGaAsSb/AlGaAsSb quantum well (QW) lasers by employing for QWs new quasi-ternary InGaSb(As) compositions that are out of the miscibility gap for InGaAsSb materials. Single spatial mode ridge lasers emitting at 2.2 - 2.7 micrometer have parameters similar to those of the infrared lasers with (lambda) less than 2 micrometer widely used for spectroscopic application. At operating currents about 80 - 200 mA and temperatures up to +50 degrees Celsius, these lasers emit CW output power of several milliwatts. Investigation of the laser spectra has revealed the current and temperature ranges where a single longitudinal mode dominates with side mode suppression of 22 - 25 dB. The dominant mode can be tuned in wavelength by varying current or temperature. The lasers were used to record high-resolution CO absorption lineshapes (2v band near 2.3 micrometer) in a static cell (14.9-cm path). Probed CO transitions were selected for applications to in situ measurements in high- temperature combustion flows. In general, the measured CO absorption lineshapes agreed with theoretical Voigt profiles calculated using the HITRAN database to within 2%. For a minimum detectable absorbance of 0.01% and a 1-meter long path, the CO measurement sensitivity for the probed R30 transition near 2.302 micrometer was 5 - 10 ppm at 1000 K. This value is about two orders of magnitude better than the sensitivity reported for CO detection with conventional diode lasers that probe transitions in the 3v band near 1.56 micrometer.
Optically-pumped type-II W lasers have exhibited improved high-temperature performance throughout the wavelength range of 2.7 micrometer to 7.3 micrometer. Low duty cycle pumping at 2.1 micrometer yielded maximum operating temperatures as high as 360 K at (lambda) less than or equal to 4 micrometer for 3 devices, with peak output powers exceeding 1.5 W at ambient temperature. Internal losses of 90 cm-1 at 300 K were seen for one device and suppressed Auger recombination coefficients were observed for all three. Pulsed operation at wavelengths as long as 7.3 micrometer was seen in another device which had a maximum operating temperature of 220 K. For 1.064 micrometer optical pumping, the same laser was able to operate in continuous-wave (cw) mode to 130 K. Cw operation was also observed at temperatures as high as 290 K for lambda approximately equals 3.0 micrometer. Maximum cw output powers (per uncoated facet) of 260 mW at (lambda) equals 3.1 micrometer and 50 mW at (lambda) equals 5.4 micrometer were observed at T equals 77 K. With further improvements in the design and growth quality of these W laser structures, it is projected the cw output powers of 0.5 W or more should be achievable at thermoelectric cooler temperatures.
In the work we continue our studies of broadened waveguide separate confinement InGaAsSb/AlGaAsSb quantum well diode lasers grown by MBE on n-GaSb substrates. To avoid the structure degradation associated with the miscibility gap in the 2.3 - 2.7 micrometer wavelength range, we used highly strained, 'quasi-ternary' InxGa1-xSb1-yAsy compounds with 0.25 < X < 0.38 and y approximately equals 0.02 as the material for QWs. From spontaneous emission measurements we have identified that the Auger process determines the rate of recombination in quantum well active region over the entire temperature range studied (15 - 110 degrees Celsius) for 2.6 micrometer lasers and at temperatures higher than 65 degrees Celsius for 2.3 micrometer lasers. Under these conditions, strong temperature dependence of Auger coefficient leads to the rapid increase of threshold current density with temperature (T0 approximately 40 degrees Celsius). In the range of 15 - 65 degrees Celsius for 2.3 micrometer devices we believe monomolecular non-radiative mechanism dominates and T0 is about 110 degrees Celsius. In addition, single-mode CW room temperature ridge-waveguide lasers with wavelength of 2.3 - 2.55 micrometer have been fabricated for the first time. The lasers display threshold currents around 50 mA with CW output powers of several milliwatts. Switching of the peak lasing position has been observed for both CW and pulsed operation and is related to second sub-band transitions. These results show that excess carrier energy distribution and their concentration are current dependent above threshold.
We review our recent progress in the design and operation of 2-micrometer InGaAsSb/AlGaAsSb quantum-well diode lasers. The devices have InGaAsSb quantum-well active regions and AlGaAsSb cladding layers, and all were grown lattice-matched to GaSb substrates using molecular-beam epitaxy. The broadened- waveguide (BW) design produces internal losses as low as 2 cm-1, which leads to external quantum efficiencies as high as 53%. Single-quantum-well lasers with 200-micrometer apertures and 2-mm-long cavities exhibit output powers of 1.9 W CW and 4 W quasi-CW. The lowest threshold current densities are 115 A/cm2. Small arrays of similar multi-quantum-well- diodes emit 10.6 W CW. The broadened-waveguide design should improve the performance of all mid-infrared diode lasers.
Ramon Martinelli, Raymond Menna, Pamela York, Dmitri Garbuzov, Hao Lee, Joseph Abeles, Nancy Morris, John Connolly, S. Yegna Narayan, Jacobus Vermaak, Gregory Olsen, David Cooper, Clinton Carlisle, Haris Riris, Anthony Cook
We have fabricated single-frequency diode lasers from a number of III-V semiconducting compounds. These diode lasers were specifically designed for laser absorption spectroscopy. Their emission wavelengths span the internal of 0.76 to 2.7 micrometers . Water vapor, CO, CO2, NH3, CH4 HF, and O2 have been detected using them. After a brief review of their physical structure and principles of operation, we present representative output characteristics of these lasers, along with a discussion of several important applications.
KEYWORDS: Modulation, Absorption, Semiconductor lasers, Temperature metrology, Sensors, Diodes, Gas lasers, Frequency modulation, Spectroscopy, Fermium
It is well known that DFB lasers tune by a factor of at least 10 times more with temperature than with current. The problem, however, is that the electrical modulation of the laser is easier and much faster than temperature modulation. This paper describes a novel technique to temperature modulate a DFB laser. A 1393 nm DFB laser chip is mounted directly on a single element thermo-electric cooler (TEC) which allows temperature modulation of the chip by passing a current in both the forward and reverse direction through the TEC. A +/- 40 mA modulation through the TEC at a rate of up to 30 Hz provides a frequency sweep of 46 GHz of the laser output frequency. The time constant of the setup is 10 ms.
KEYWORDS: Semiconductor lasers, Optical amplifiers, Laser systems engineering, Ultrafast phenomena, Semiconductors, Diodes, Systems modeling, Laser optics, High power lasers, Oscillators
An ultrafast modelocked semiconductor laser diode system has been used to seed a flashlamp pumped Cr:LiSAF regenerative amplifier system, producing subpicosecond pulses with millijoule output pulse energy. This system has the potential to eliminate argon ion pumped based ultrafast laser systems.
We have demonstrated distributed-feedback, 1.39 micrometer wavelength InGaAsP/InP, multiple-quantum-well, folded-cavity surface-emitting, laser diodes with a low threshold current of 25 mA. These devices have greater than 45 dB side-mode suppression. Their wavelength tunes continuously with current over an interval of 1.5 angstrom at a rate of 0.11 angstrom/mA (-1.7 GHz/mA). These devices are useful for two-dimensional spectroscopic gas-sensing applications. Employing these compact lasers, we have detected atmospheric water-vapor at 1.3925 micrometer.
Calculation of the optical field distribution in 2 micrometer AlGaAsSb/InGaAsSb/GaSb multiple quantum well (MQW) lasers shows that incorporation of about 100 nm waveguide layers between quantum wells (QW) and cladding layers increases the optical confinement factor and reduces losses caused by mode penetration into doped cladding layers. Structures of this type have been grown by MBE. Both photoluminescence studies and measurements of laser diode parameters demonstrate that excess carriers confined in the waveguide are effectively collected and recombine in the QWs despite the small valence band offset at the interface of the QW and the waveguide, which is expected to be less than kT at 300 K.
KEYWORDS: Waveguides, Near field optics, Quantum wells, Waveguide lasers, Semiconductor lasers, Cladding, Continuous wave operation, Diodes, Near field, High power lasers
AlGaAs/GaAs graded-index separate-confinement heterostructure single quantum well (GRINSCH-SQW) lasers with different waveguide thickness have been analyzed experimentally and compared with results from modeling using transverse optical field distributions. We have found that for GRINSCH lasers the halfwidth of near-field and far-field patterns depends very weakly on the waveguide thickness due to the focusing of the optical field in the transverse direction by the graded-index waveguide. At the same time, the mode intensity in the cladding layers is reduced by two orders of magnitude as the waveguide thickness is increased from 40 nm to 1200 nm. As a result, a 20% improvement in the differential quantum efficiency ((eta) d) is realized, while the threshold current density remains unchanged. Differential quantum efficiency as high as 78% and output power exceeding 4 W cw have been obtained for broadened waveguide lasers.
Many simple molecules, such as H2O, CO2, CO, N2O, CH4, and HCN, have strong absorption bands at wavelengths between 2 and 3.5 micrometers . We are developing InGaAsSb/AlGaAsSb multi-quantum-well diode lasers operating from 2 to 3.5 micrometers as sources for trace-gas monitors. These devices are grown by molecular beam epitaxy, and they generally comprise four or five InGaAsSb quantum wells separated by AlGaAsSb barriers. The cladding layers are high-Al-content AlGaAsSb layers. Our longest-wavelength, room- temperature (20 degree(s)C) lasers operate at 2.78 micrometers in the pulsed mode, delivering 95 mW peak power. The highest temperature for pulsed-mode operation is 60 degree(s)C, at which the wavelength is 2.9 micrometers . Between 78 and 200 K they operate cw, and at 200 K the output is 3 mW at 2.66 micrometers in a dominant single mode. We discuss the properties of these lasers along with some initial applications to water-vapor detection.
Laser absorption spectroscopy using III-V semiconductor laser diodes has several advantages for gas sensing applications, as compared with traditional methods employing tunable dye laser and II-VI (e.g., lead salt) laser sources. These advantages include room-temperature operation, reduced cost, and compact size. Limited coverage of spectroscopy wavelengths by high-performance III-V lasers has prevented their widespread application to gas sensing. At those fixed wavelengths, performance of commercially available devices has been limited by multimode emission and/or inadequate wavelength tuning and mode hops. These spectra can, however, be greatly improved by incorporating frequency-selective structures. We have developed single-mode distributed-feedback (DFB) GaAs/AlGaAs quantum well lasers applicable to laser spectroscopy of molecules absorbing in the wavelength interval from 760 to 840 nm. These devices exhibit low threshold current (< 20 mA), high efficiency (> 40%), high output power (> 25 mW), and narrow linewidth (< 3.0 MHz). The lasers display smooth, continuous, single-mode wavelength tuning over 5 nm. Typical temperature and current wavelength-tuning coefficients are 0.065 nm/ degree(s)C and 0.0075 nm/mA (approximately -3.5 GHz/mA), respectively. In preliminary tests, they have been applied to the detection of H2O vapor and O2 gas.
Joseph Abeles, Robert Amantea, James Andrews, Pamela York, John Connolly, R. Rios, W. Reichert, Jay Kirk, T. Zamerowski, Dean Gilbert, So Liew, N. Hughes, Jerome Butler, Gary Evans, S. Yegna Narayan, Donald Channin
Monolithic fanned-out amplifier lasers (acronym: FOAL), are capable of producing high optical power, greater than 1 watt. They operate single wavelength and can be collimated to generate a nearly Gaussian beam useful for applications requiring an inexpensive compact source of coherent radiation. Examples are space communication, frequency doubling, thermal writing, optical sensing, optical interconnection, and optical computing.
Laser source requirements for optically activated high power switches are reviewed. Various configurations of two dimensional semiconductor lasers along with their present and projected performance levels are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.