We study coherent laser arrays operating in epitaxially grown semiconductor membrane quantum wells. The samples are deposited by transfer on substrates of oxidized silicon and we record the real and reciprocal space of the laser emission. The Laser arrays are in a lateral emission geometry and are waveguides lasers where the end mirrors are the end-facets of the cleaved membranes which usually form cavities in the order of 100 microns. We are able to create waveguide laser arrays with modal widths of approximately 5-10 microns separated by 10-20 microns. We use real and reciprocal space imaging to examine the emission characteristics of the lasing cavity. Remarkably, we discover that the mutual coherence is preserved whether the cavity operates on a single longitudinal mode or multiple modes. We will show how their emission and coherence can be controlled using a digital micromirror device to control the position and shape of the pump illumination studying threshold, coherence and frequency.
We present coherent laser arrays in a silicon photonics compatible waveguide geometry in optically pumped semiconductor membrane quantum well lasers (MQWLs) on oxidised silicon and silicon carbide substrates. Real and reciprocal space imaging is used to investigate the emission of the laser arrays and mutual coherence is seen to be maintained while operating on single and multiple longitudinal modes in each cavity. Further, we investigate writing laser cavity arrays through micro-structuring of the MQWL and also through the utilisation of a spatial light modulator (SLM) to define areas of gain in the MQWL by shaping the pump beam.
We present continuous wave bi-frequency operation in an optically pumped membrane external-cavity surface-emitting laser (MECSEL). A laser ablation system utilising a digital micromirror device is used to define areas of intra-cavity loss by removing Bragg layers from the surface of the cavity mirror in a crosshair pattern with an undamaged central area. Our MECSEL simultaneously operates on two Hermite-Gaussian spatial modes, the fundamental and a higher order mode, by aligning the laser cavity to be centred on a masked area. We demonstrate bi-frequency operation with a wavelength separation on the order of 5 nm around 1005 nm.
Optically pumped waveguide coherent laser arrays are demonstrated in an 1-micron-thick-semiconductor-membrane-InGaAs-quantum-well laser transferred on a silicon carbide heat spreader emitting at 1010 nm. We employ a real and Fourier space imaging setup to study the emission of single and arrays of laser cavities. We are able to create waveguide laser arrays with modal widths of approximately 5-10 μm separated by 5-10 μm which maintain their mutual coherence while operating on either single or multiple longitudinal modes. This laser geometry can be accurately controlled by the laser pump and they offer a new high gain laser platform that permits integration with photonic structures.
There is significant interest in developing laser wavelengths between 700 and 800 nm that may then be frequency doubled to the UV for applications in spectroscopy and atomic physics. We present our most recent results on both a 739 nm AlGaAs/AlGaInP VECSEL, where we demonstrate 150 mW of CW power suitable for frequency doubling to the Yb+ cooling transition at 369.5 nm, and a 780nm AlGaAs/AlGaInP VECSEL which was utilised in a novel demonstration of second harmonic generation in a Zinc-indiffused MgO:PPLN waveguide. In the latter we have generated 1 mW of power at 390 nm.
We show the characterisation of spectral broadening in the Tantalum Pentoxide waveguide system as a function of pump wavelength, showing spectra for central pump wavelengths of 0.9 to 1.5 um (150 fs, 80 MHz). We have achieved octave spanning spectra with approximately 5 mW of laser power coupled in the waveguide at 1 um pumping wavelength for a linear buried waveguide using a commercial source.
Dual frequency comb generation is a field which has seen considerable interest in recent years, with notable implementations such as dual wavelength operation of a Mode-locked Integrated External-cavity Surface Emit- ting Laser (MIXSEL), CW pumping of orthogonal polarisation states in a microring resonator, and optical phase-locking of discrete frequency combs. Dual frequency operation of CW Vertical External Cavity Surface Emitting Lasers (VECSEL) has been demonstrated in a particularly well controlled way using sub-wavelength metallic masks fabricated onto the surface of the laser gain structure. We present a variation of this technique in which patterned loss masks are machined onto a VECSEL cavity mirror using a Digital Micromirror Device (DMD)-enabled femtosecond-laser ablation system, where the DMD is used as an intensity spatial light mod- ulator. Interaction of the loss mask with the laser mode area results in the VECSEL oscillating preferentially on the spatial modes that observe the least loss within the aperture, and modulation of pump power enables control of the oscillating mode frequency separation. We describe the characteristics of the masks and the properties of the laser operation as progress towards eventual pulsed emission. Our technique has the advan- tages of discrete gain and Semiconductor Saturable Absorber Mirror (SESAM) structures, very fast fabrication times and the ability to fabricate multiple apertures on a single mirror.
The THz time domain spectrometer (THz-TDS) has revolutionized the adoption of THz science in fields such as medicine, material characterization, pharmaceutical research and biology among others. Traditionally a THz-TDS was based on a titanium sapphire laser, while most of the commercially sold spectrometers today adopt fiber lasers. Vertical External Cavity Surface emitting lasers or VECSELs have potential to be the future laser of choice for the implementation of THz spectrometers, as they are small, low-cost, low noise and high repetition rate. Here I will outline the progress in our laboratory and the general community concerning VECSEL-THz technology and I will account the problems that have to be solved for the VECSEL-THz technology to succeed.
Tantalum pentoxide (Ta2O5) is a promising material for mass-producible, multi-functional, integrated photonics circuits on silicon, exhibiting robust electrical, mechanical and thermal properties, as well as good CMOS compatibility. In addition, Ta2O5 has been reported to demonstrate a non-linear response comparable to that of chalcogenide glass, in the region of 3-6 times larger than that of materials such as silica (SiO2) or silicon nitride (Si3N4). In contrast to Si-based dielectrics, it will accept trivalent ytterbium and erbium dopant ions, opening the possibility of on-chip amplification. The high refractive index of Ta2O5 is consistent with small guided mode cross-section area, and allows the construction of micro-ring resonators. Propagation losses as low as 0.2 dB=cm have been reported. In this paper we describe the design of a planar Ta2O5 waveguides optimised for the generation of coherent continuum with near infrared pulse trains at kW peak powers. The Pulse Repetition Frequency (PRF) of the VECSEL can be tuned to a sub-harmonic of the planar micro-ring and the optical pump power applied to the VECSEL can be adjusted so that mode-matching of the VECSEL pulse train with the micro-ring resonator can be achieved. We shall describe the fabrication of Ta2O5 guiding structures, and the characterisation of their nonlinear and other optical properties. Characterisation with conventional lasers will be used to assess the degree of coherent spectral broadening likely to be achievable using these devices when driven by mode-locked VECSELs operating near the current state-of- art for pulse energy and duration.
Mode-locked Vertical External-Cavity Surface-Emitting Lasers (ML-VECSELs) have seen advances in pulse energy and peak power thanks to improved power handling techniques and structure designs. The significant increase in gain and intra-cavity power, coupled with the VECSEL's accessible external-cavity, has made the addition of intra-cavity elements for frequency conversion possible even for lossy conversion mechanisms. In this paper, we report a gold-patterned Semiconductor Saturable Absorbing Mirror (SESAM) that functions both as a slow saturable absorber in a ML-VECSEL and as an intracavity strip line Photo-Conductive Antenna (PCA) for THz emission. Here we describe the design of the strip emitter, THz-Time Domain Spectroscopy (TDS) performed with a ML-Yb fibre laser and the mode-locked characterisation of a ML-VECSEL built with the patterned SESAM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.