The macroscopic distributions of an electric field and of an induced second-order nonlinearity in a waveguide are for the first time unveiled in case of metal-contact periodic poling. A basic field distribution between a set of electrodes with a generalized arbitrary width is first proposed and then, by using linear superposition and electrode periodicity, the net electric field generated in the whole waveguide is derived explicitly. On the basis of the total electric field, the mean distribution of the nonlinearity and the quasi-phase matching efficiency induced from the total field are defined to analyze the effectiveness in each type of the four periodic poling schemes classified by the configurations of electrode combinations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.