Convolutional neural networks (CNNs) are state-of-the-art techniques for image classification; however, CNNs require an extensive amount of training data to achieve high accuracy. This demand presents a challenge because the existing amount of measured synthetic aperture radar (SAR) data is typically limited to just a few examples and does not account for articulations, clutter, and other target or scene variability. Therefore, this research aimed to assess the feasibility of combining synthetic and measured SAR images to produce a classification network that is robust to operating conditions not present in measured data and that may adapt to new targets without necessarily training on measured SAR images. A network adapted from the CIFAR-10 LeNet architecture in MATLAB Convolutional Neural Network (MatConvNet) was first trained on a database of multiple synthetic Moving and Stationary Target Acquisition and Recognition (MSTAR) targets. After the network classified with almost perfect accuracy, the synthetic data was replaced with corresponding measured data. Only the first layer of filters was permitted to change in order to create a translation layer between synthetic and measured data. The low error rate of this experiment demonstrates that diverse clutter and target types not represented in measured training data may be introduced in synthetic training data and later recognized in measured test data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.