KEYWORDS: Cancer, Breast, Breast cancer, Mammography, Cancer detection, Deep learning, Medical physics, Visualization, Risk assessment, Digital mammography
When developing Deep Learning models intended for clinical applications, understanding which part of the input contributed the most to the final decision is crucial. Our study brings interpretability to a Breast Cancer Risk (BCR) prediction by exploring whether the model relies on the laterality of the breast, where cancer ultimately develops, and how this reliance evolves over time. A dataset of 1210 Full-Field-Digital-Mammography exams with 0 to 7 Years To Cancer was used. MIRAI model was employed for BCR predictions. To determine which side of the breast contributed the most to the BCR prediction, the signal difference between left and right breasts was calculated for eight attribution-based interpretability techniques. AUC was calculated to investigate whether the BCR prediction is predominantly made from the breast, where the cancer ultimately develops. For 0 to 1 Years To Cancer, the model predominantly predicts BCR based on the side of the breast where the cancer is already present AUC=0.92 to 0.95. The top-performing attribution methods achieved an AUC of 0.70 for mammograms captured 1 to 3 Years To Cancer. For exams that were 3 to 5 Years To Cancer, a significant drop to AUC of 0.57 was observed. When moving to 5 to 7 Years To Cancer, focus on the breast with future cancer becomes random. All attribution methods showed that BCR predictions extending beyond three years from screen-detected cancer are most likely based on typical breast characteristics, such as density and other long-standing tissue patterns; however, for short-term BCR predictions, the model seems to detect early signs of tumor development.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.