Hyperspectral imaging systems are finding broader applications in both the commercial and aerospace markets. It is becoming clear that to optimize the performance of these systems, their instrument transfer function needs to be tailored for each application. Vis-SWIR systems in the full 400nm to 2500nm waveband present particular design and manufacturing challenges. A single blazed grating is inadequate for a system operating in the full vis-SWIR wavelength range. In addition, optical materials and broad band coatings present a challenge for non-reflective systems. An understanding of the application and wavelengths of interest, combined with a judicious choice of a focal plane array, can then lead to an optimized system for the specific application. The ability to tailor the grating and manufacture a wide variety of grating profiles and substrate shapes becomes a significant performance enabler. This paper will discuss how the use of optical, coating, and grating design/analysis software, combined with grating manufacturing techniques assure meeting high performance requirements for different applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.