Computed axial lithography (CAL) is a volumetric additive manufacturing method in which a three-dimensional light dose distribution is constructed in a photopolymer from the superposition of illumination patterns from many different angles. The technique’s advantages over layer-by-layer light printing methods stem from the fact that in CAL hydrodynamic stresses are effectively eliminated from the resin precursor material during printing. This key difference allows a wider range of materials to be processed, including high-viscosity or thermally gelled precursors, and allows polymeric objects to be printed around pre-existing solid objects (‘overprinting’). In this talk we describe some of the current limitations on spatial resolution, printing speed, and mechanical properties in CAL. We also describe a computationally efficient approach to modeling the occlusion of light by objects suspended in the printing volume, which supports the optimization of overprinting processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.