Previous research has demonstrated promise for the use of dielectric elastomer (DE) films in diaphragm pump applications. Because the films tend to be quite thin, single layers operate at very low pressures. To make this technology suitable for practical applications, the films may be organized into laminates which will operate at increased pressures. Radially stretched circular diaphragms of two materials were tested: 3M VHB 4905 polyacrylate and spin-cast Nusil CF19-2186 silicone. The diaphragms were stacked, each layer sharing an electrode with the adjacent layer. The stack was mounted on a sealed chamber and energized at varied electric fields while regulated pressure was applied to the interior chamber, displacing the diaphragm. The pressure-volume properties of the stacks were recorded for each activation state.
With the ultimate goal of constructing diaphragm-type pumps, we have measured pressure-volume characteristics of single-layer dielectric elastomers diaphragms. Circular dielectric elastomer diaphragms were prepared by biaxial stretching of 3M VHB 4905 polyacrylate, or spin casting and modest or no biaxial stretching of silicone rubber films, followed by mounting to a sealed chamber having a 3.8 cm diameter opening. Pressure-volume characteristics were measured at voltages that provided field strengths up to 80 MV/m in un-deformed VHB films and 50-75 MV/m in silicone films. The most highly pre-strained VHB diaphragms were found to have linear pressure-volume characteristics whose slopes (diaphragm compliance) depended sensitively upon applied field at higher field strengths. Compliance of unstretched silicone diaphragms was nearly independent of field strength at the fields tested, but pressure-volume characteristics shifted markedly. For both kinds of dielectric elastomers, pressure-volume work loops of significant size can be obtained for certain operating pressures. Each type of diaphragm may have advantages in certain applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.