We consider the problem of jointly forming images and characterizing anisotropy from wide-angle synthetic aperture radar (SAR) measurements. Conventional SAR image formation techniques assume isotropic scattering, which is not valid with wide-angle apertures. We present a method based on a sparse representation of aspect-dependent scattering with an overcomplete basis composed of basis vectors with varying levels of angular persistence. Solved as an inverse problem, the result is a complex-valued, aspect-dependent response for each spatial location in a scene. Our non-parametric approach does not suffer from reduced cross-range resolution inherent in subaperture methods and considers all point scatterers in a scene jointly. The choice of the overcomplete basis set incorporates prior knowledge of aspect-dependent scattering, but the method is flexible enough to admit solutions that may not match a family of parametric functions. We enforce sparsity through regularization based on the ℓk-norm, k < 1. This formulation leads to an optimization problem that is solved through a robust quasi-Newton method. We also develop a graph-structured interpretation of the overcomplete basis leading towards approximate algorithms using guided depth-first search with appropriate stopping conditions and search heuristics. We present experimental results on synthetic scenes and the backhoe public release dataset.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.