The Korea Astronomy and Space Science Institute has developed NISS (Near-infrared Imaging Spectrometer for Star formation history) as a scientific payload for the first next generation of small satellite, NEXTSat-1 in Korea. NISS is a NIR imaging spectrometer exploiting a Linear Variable Filter (LVF) in the spectral passband from 0.95 um to 2.5 um and with low spectral resolution of 20. Optical system consists of 150mm aperture off-axis mirror system and 8-element relay-lenses providing a field of view of 4 square degrees. Primary and secondary aluminum mirrors made of RSA6061 are precisely fabricated and all of the lenses are polished with infrared optics materials. In principle, the optomechanical design has to withstand the vibration conditions of the launcher and maintain optical performance in the space environment. The main structure and optical system of the NISS are cooled down to about 200K by passive cooling for our astronomical mission. We also cool the detector and the LVF down to about 90K by using a small stirling cooler at 200K stage. The cooling test for whole assembled body has shown that the NISS can be cooled down to 200K by passive cooling during about 80 hours. We confirmed that the optomechanical structure is safe and rigid enough to maintain the system performance during the cooling, vibration and thermal vacuum test. After the integration of the NISS into the NEXTSat-1, space environmental tests for the satellite were passed. In this paper, we report the design, fabrication, assembly and test of the optomechanical structure for the NISS flight model.
Korea Astronomy and Space Science Institute (KASI) successfully developed the Near-infrared Imaging Spectrometer for Star formation history (NISS), which is a scientific payload for the next-generation small satellite-1 (NEXTSat-1) in Korea and is expected to be launched in 2018. The major science cases of NISS are to probe the star formation in local and early Universe through the imaging spectroscopic observations in the near-infrared. The off-axis catadioptric optics with 150mm aperture diameter is designed to cover the FoV of 2x2 deg with the passband of 0.95-2.5μm. The linear variable filter (LVF) is adopted as a disperse element with spectral resolution of R~20. Given the error budgets from the optical tolerance analysis, all spherical and non-spherical surfaces were conventionally polished and finished in the ultraprecision method, respectively. Primary and secondary mirrors were aligned by using interferometer, resulting in residual wave-front errors of P-V 2.7μm and RMS 0.61μm, respectively. To avoid and minimize any misalignment, lenses assembled were confirmed with de-centering measurement tool from Tri-Optics. As one of the key optical design concepts, afocal beam from primary and secondary mirrors combined made much less sensitive the alignment process between mirrors and relay lenses. As the optical performance test, the FWHM of PSF was measured about 16μm at the room temperature, and the IR sensor was successfully aligned in the optimized position at the cryogenic temperature. Finally, wavelength calibration was executed by using monochromatic IR sources. To support the complication of optical configuration, the opto-mechanical structure was optimized to endure the launching condition and the space environment. We confirmed that the optical performance can be maintained after the space environmental test. In this paper, we present the development of optical system of NISS from optical design to performance test and calibration.
The NISS (Near-infrared Imaging Spectrometer for Star formation history) have been developed by KASI as one of the scientific payloads onboard the first small satellite of NEXTSat program (NEXTSat-1) in Korea. The both imaging and low spectral resolution spectroscopy in the wide near-infrared range from 0.95 to 2.5µm and wide field of view of 2° x 2° is a unique capability of the NISS for studying the star formation in local and distant Universe. In the design of the NISS, special care was taken by implementing the off-axis system to increase the total throughput with limited resources from the small satellite. We confirmed that the mechanical structure of the NISS could be maintained in space through passive cooling of the telescope. To operate the infrared detector and spectral filters at 80K stage, the compact dewar module was assembled after the relay-lens module. The integrations of relay-lens part, primary-secondary mirror assembly and dewar module were independently performed, which alleviated the complex alignment process. The telescope and infrared sensor were validated for the operation at cryogenic temperatures of around 200K and 80K, respectively. The system performance of the NISS, such as focus, cooling efficiency, wavelength calibration and system noise, was evaluated by utilizing our constructed test facility. After the integration into the NEXTSat-1, the flight model of the NISS was tested under the space environments. The NISS is scheduled to be launched in late 2018 and it will demonstrate core technologies related to the future infrared space telescope in Korea.
NISS (Near-infrared Imaging Spectrometer for Star formation history) is a unique spaceborne imaging spectrometer (R = 20) onboard the Korea’s next micro-satellite NEXTSat-1 to investigate the star formation history of Universe in near infrared wavelength region (0.9 – 2.5 μm). In this paper, we introduce the NISS H2RG detector electronics, the test configuration, and the performance test results. Analyzed data will be presented on; system gain, dark current, readout noise, crosstalk, linearity, and persistence. Also, we present basic test results of a Korean manufactured IR detector, 640 x 512 InAsSb 15 μm pixel pitch, developed for future Korean lunar mission.
The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared instrument optimized to the first next generation of small satellite (NEXTSat-1) in Korea. The spectro-photometric capability in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the NISS will perform the large areal imaging spectroscopic survey for astronomical objects and low background regions. We have paid careful attention to reduce the volume and to increase the total throughput. The newly implemented off-axis optics has a wide field of view (2° x 2°) and a wide wavelength range from 0.9 to 3.8μm. The mechanical structure is designed to consider launching conditions and passive cooling of the telescope. The compact dewar after relay-lens module is to operate the infrared detector and spectral filters at 80K stage. The independent integration of relay-lens part and primary-secondary mirror assembly alleviates the complex alignment process. We confirmed that the telescope and the infrared sensor can be cooled down to around 200K and 80K, respectively. The engineering qualification model of the NISS was tested in the space environment including the launch-induced vibration and shock. The NISS will be expected to demonstrate core technologies related to the development of the future infrared space telescope in Korea.
IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras and a slit viewing camera, all three of which use Teledyne's λc~2.5μm 2k×2k HgCdTe HAWAII-2RG CMOS detectors. The two spectrograph cameras employ science grade detectors, while the slit viewing camera includes an engineering grade detector. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control those detectors. We performed experiments to characterize and optimize the detector systems in the IGRINS cryostat. We present measurements and optimization of noise, dark current, and referencelevel stability obtained under dark conditions. We also discuss well depth, linearity and conversion gain measurements obtained using an external light source.
The Immersion Grating Infrared Spectrometer (IGRINS) is a compact high-resolution near-infrared cross-dispersed
spectrograph whose primary disperser is a silicon immersion grating. IGRINS covers the entire portion of the
wavelength range between 1.45 and 2.45μm that is accessible from the ground and does so in a single exposure with a
resolving power of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for
separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald
Observatory, the slit size is 1ʺ x 15ʺ and the plate scale is 0.27ʺ pixel. The spectrograph employs two 2048 x 2048
pixel Teledyne Scientific and Imaging HAWAII-2RG detectors with SIDECAR ASIC cryogenic controllers. The
instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly
identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows
the spectrograph collimated beam size to be only 25mm, which permits a moderately sized (0.96m x 0.6m x 0.38m)
rectangular cryostat to contain the entire spectrograph. The fabrication and assembly of the optical and mechanical
components were completed in 2013. We describe the major design characteristics of the instrument including the
system requirements and the technical strategy to meet them. We also present early performance test results obtained
from the commissioning runs at the McDonald Observatory.
IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph
jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS
employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors and for the
final (field-flattening) lens in the optical train serve a critical function in the overall instrument design: Optically, they
permit the only positional compensation in the otherwise “build to print” design. Thermally, they permit setting and
control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication
of the mechanical mount as a single module. The detector mount includes the array housing, housing for the SIDECAR
ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the
support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field
flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount.
Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural
stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis.
Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well.
IGRINS, the Immersion GRating INfrared Spectrometer includes an immersion grating made of silicon and observes
both H-band (1.49~1.80 μm) and K-band (1.96~2.46 μm), simultaneously. In order to align such an infrared optical
system, the compensator in its optical components has been adjusted within tolerances at room temperature without
vacuum environment. However, such a system will ultimately operate at low temperature and vacuum with no
adjustment mechanism. Therefore a reasonable relationship between different environmental variations such as room and
low temperature might provide useful knowledge to align the system properly. We are attempting to develop a new
process to predict the Wave Front Error (WFE), and to produce correct mechanical control values when the optical
system is perturbed by moving the lens at room temperature. The purpose is to provide adequate optical performance
without making changes at operating temperature. In other words, WFE was measured at operating temperature without
any modification but a compensator was altered correctly at room temperature to meet target performance. The ‘no
adjustment’ philosophy was achieved by deterministic mechanical adjustment at room temperature from a simulation
that we developed. In this study, an achromatic doublet lens was used to substitute for the H and K band camera of
IGRINS. This novel process exhibits accuracy predictability of about 0.002 λ rms WFE and can be applied to a cooled
infrared optical systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.