Microresonators have been extensively studied in integrated photonics over the past two decades. However, the thermal frequency drift of a resonator limits its applications in practice. Athermal microresonators, as a passive solution, have become highly attractive. We propose two types of broadband athermal waveguides, with three zero-thermal-drift wavelengths achieved through mode anti-crossing effect, for the first time. For the polymer-coated waveguide, the effective thermo-optical coefficient (TOC) has a variation of ±1.5×10−6/K from 1350 to 1790 nm. For the TiO2-coated waveguide, the effective TOC has a variation of ±1.5×10−6/K from 1510 to 2090 nm. Over such a wide band of 440 or 580 nm, both the athermal microring resonators show excellent athermal property of <1 pm/K. The broadband athermal characteristics of the resonators would enable a wide variety of applications, e.g., wavelength-division multiplexing filters, modulators, lasers, sensors, and nonlinear optical sources.
Photonic integrated circuits suffer from a thermal drift of device performance, which is a key obstacle to the development of commercial optoelectronic products. Temperature-insensitive integrated waveguides and resonators have been demonstrated at a single wavelength, using materials with a negative TOC, which are not suitable for WDM devices and wideband nonlinear devices. Here, we propose two waveguides to realize the generation of broadband athermal features. For one of them, the temperature-insensitivity over a bandwidth of 780 nm (1280 to 2060 nm) with an ultra-small effective-TOC within is ±1×10-6/K. Uniquely, the waveguide has small anomalous dispersion (from 66 to 329 ps/nm/km) over the same band and is suitable for frequency comb generation without being affected by intra-cavity thermal dynamics. We also show another waveguide design with an effective-TOC variation of ±1×10-6/K over a bandwidth of 1060 nm, from 1220 to 2280 nm. The obtained dispersion varies from -232 to -502 ps/nm/km over the same band, which can be used in nonlinear devices.
The high temperature sensitivity of silicon material limits the applications of silicon-based micro-ring resonators in integrated photonics. To realize a low but broadband temperature-dependence-wavelength-shift (TDWS) micro-ring resonator, designing a broadband athermal waveguide becomes a significant task. In this work, we propose a broadband athermal waveguide which shows a low effective thermos-optical coefficient (TOC) of ±1×10-6/K at 1400 nm to 1700 nm. The proposed waveguide shows low-loss performance of 0.01 dB/cm and stable broadband-athermal ability when it’s applied in micro-ring resonators, and the optical loss of micro-ring resonator with a radius of 100 μm using this waveguide is 0.02 dB/cm.
Photonic circuits suffer from thermal drift of device performance, which is a key obstacle to the development of commercial optoelectronic products. Temperature-insensitive integrated waveguides and resonators have been demonstrated by using materials with a negative TOC at a single wavelength, which are not suitable for WDM devices and wideband nonlinear devices. Here, we propose a waveguide structure with temperature-insensitivity over a bandwidth of 780 nm (1280 to 2060 nm) with an ultra-small effective TOC within ±1×10-6/K. Uniquely, the waveguide has small anomalous dispersion (from 66 to 329 ps/nm/km) over the same band and is suitable for frequency comb generation without being affected by intra-cavity thermal dynamics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.