A scheme to generate a flat optical frequency comb (OFC) is proposed and experimentally demonstrated based on a directly modulated distributed feedback (DFB) laser cascaded with a polarization modulator (PolM). In the proposed scheme, the DFB laser is optically injection-locked by a tunable laser source and directly modulated by a radio frequency (RF) signal, which is amplified by a microwave power amplifier. The optical signal is then sent to PolM via a polarization controller (PC) and modulated by the amplified and phase-shifted RF signal from the same source. The optical signal is finally received and measured by an optical spectrum analyzer (OSA) after transmitting through another PC and a polarizer. Here, the OFC with their power variation within 3 dB is desired, and four OFCs with 6, 6, 5, and 4 comb lines are generated using the RF signals with different frequencies, which have a flatness of, respectively, 2.4, 2.5, 0.7, and 0.6 dB. Here, the number of comb lines is decreased, which is due to the RF signal power decrease while its frequency is raised.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.