Feature extraction techniques play an essential role in classifying and recognizing targets in synthetic aperture radar (SAR) images. This article proposes a hybrid feature extraction technique based on convolutional neural networks and principal component analysis. The proposed method is used to extract features of oil rigs and ships in C-band synthetic aperture radar polarimetric images obtained with the Sentinel-1 satellite system. The extracted features are used as input in the logistic regression (LR), support vector machine (SVM), random forest (RF), naive Bayes (NB), decision tree (DT), and k-nearest-neighbors (kNN) classification algorithms. Furthermore, the statistical tests of Kruskal-Wallis and Dunn were considered to show that the proposed extraction algorithm has a significant impact on the performance of the classifiers.
Change detection methods are frequently associated with wavelength-resolution synthetic aperture radar (SAR) images for foliage-penetrating (FOPEN) applications (e.g., the detection of concealed targets in forestry areas), being a research topic of interest over the last decades. The challenge associated with the design of automated change detection techniques goes beyond performing the target detection. It is also related to clutter suppression aiming at a low false alarm rate (FAR). The problem of detecting targets and removing content in SAR data can be treated as an unsupervised signal separation problem, usually referred to as blind source separation (BSS). Additionally, low frequency wavelength-resolution SAR images can be considered to follow an additive separation model due to their backscatter characteristics. In this context, it is possible to explore robust principal component analysis (RPCA) as a source-separation method for problems in which the mixing model is additive and two-dimensional, as the interest SAR images. This paper presents a change detection method for wavelengthresolution SAR images based on the RPCA via principal component pursuit (PCP), considering the use of small image stacks to explore the data diversity from measurements of different flight headings. The proposed method is evaluated using real data obtained from measurements of the ultrawideband (UWB) very high frequency (VHF) SAR system CARABAS II. The experimental results show that the proposed method can achieve a high probability of detection (PD) values for a low FAR (i.e., PD of 0.98 for a FAR of 0.41 objects per square kilometer). Finally, discussions regarding the use of the RPCA in change detection methods and the diversity gains are provided in the paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.