Simulating coherent control with femtosecond pulses on a polyatomic molecule with anharmonic splitting was
demonstrated. The simulation mimicked pulse shaping of a Spatial Light Modulator (SLM) and the interaction was
described with the Von Neumann equation. A transform limited pulse with a fluence of 600 J/m2 produced 18% of the
population in an arbitrarily chosen upper vibrational state, n =2. Phase only and amplitude only shaped pulse produced
optimum values of 60% and 40% respectively, of the population in the vibrational state, n=2, after interaction with the
ultra short pulse. The combination of phase and amplitude shaping produced the best results, 80% of the population was
in the targeted vibrational state, n=2, after interaction. These simulations were carried out with all the population initially
in the ground vibrational level. It was found that even at room temperatures (300 Kelvin) that the population in the
selected level is comparable with the case where all population is initially in the ground vibrational state. With a 10%
noise added to the amplitude and phase masks, selective excitation of the targeted vibrational state is still possible.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.