Recent works provide evidence for a large orbital Rashba-Edelstein effect at the interface between Cu and its oxide. Here, we experimentally demonstrate that a very large enhancement of both the net torque and the spin-pumping voltage (up to a factor of two) can be obtained with the insertion of a Pt layer whose large spin-orbit coupling helps to convert a pure orbital current into a spin current. These two reciprocal phenomena, observed simultaneously for the first time in the same Co/Pt/Cu/CuOx samples, are in agreement and their orbital angular momentum nature associated to a charge-to-orbit (orbit-to-charge) conversion at the Cu/CuOx interface constitutes a robust interpretation. To disentangle spin and orbital currents in these systems, we also measure the ferromagnet thickness dependence of the net torques and observe a clear increase of the corresponding dephasing length, indicating the contribution of pure orbital currents acting on the magnetization. From the Cu thickness dependence, we also verify that the conversion occurs at the Cu/CuOx interface through the orbital Rashba effect as observed in both torque and spin-pumping measurements.
This work reports remanent electric-control of spin-orbit torques (SOT) in a perpendicular ferromagnet-SrTiO3 system. Non-volatile electric-control of the sheet resistance is achieved with 1150% contrast, and two remanent resistivity states. A remanent electric-control of the SOT efficiency is demonstrated using second harmonic Hall methods, with sign inversion of the anti-damping-like effective field. These results are consistent with a combination of both intrinsic modulation of the SOT efficiency and extrinsic modulation due to the non-volatile electric-control of the current injection in the 2DEG. The non-volatile control of the SOT effective field is evidenced by reproducible inversion of the SOTs after voltage pulses initialization, opening the way to reconfigurable SOT memories and logic-gate architectures.
Terahertz (THz) emission spectroscopy in spin systems has become a very powerful method to generate THz radiation and to investigate the properties of Rashba or Topological Insulator surface states. The THz emission can be generated in heavy metallic or in more general Rashba systems. In 3d/5d transient metal bilayers THz emission in via the Inverse Spin Hall effect. Beyond heavy metal structures, Rashba states are strong candidates for THz-spintronics owing to their high spin to charge conversion properties. Here we present 2D electron gas with strong Rashba spin-orbit coupling and demonstrate THz emission via the Inverse Edelstein Effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.