The Gemini Planet Imager (GPI) is a high-contrast imaging instrument designed to directly detect and characterize young, Jupiter-mass exoplanets. After six years of operation at Gemini South in Chile, the instrument is being upgraded and relocated to Gemini North in Hawaii as GPI 2.0. GPI helped establish that Jovian-mass planets have a higher occurrence rate at smaller separations, motivating several sub-system upgrades to obtain deeper contrasts (up to 20 times improvement to the current limit), particularly at small inner working angles. This enables access to additional science areas for GPI 2.0, including low-mass stars, young nearby stars, solar system objects, planet formation in disks, and planet variability. The necessary instrumental changes required toenable these new scientific goals are to (i) the adaptive optics system, by replacing the current Shack-Hartmann Wavefront Sensor (WFS) with a pyramid WFS and a custom EMCCD, (ii) the integral field spectrograph, by employing a new set of prisms to enable an additional broadband (Y-K band) low spectral resolution mode, as well as replacing the pupil viewer camera with a faster, lower noise C-RED2 camera (iii) the calibration interferometer, by upgrading the low-order WFS used for internal alignment and on-sky target tracking with a C-RED2 camera and replacing the calibration high-order WFS used for measuring and correcting non-common path aberrations with a self coherent camera, (iv) the apodized-pupil Lyot coronagraph designs and (v) the software, to enable high-efficiency queue operations at Gemini North. GPI 2.0 is expected to go on-sky in early 2024. Here I will present the new scientific goals, the key upgrades, the current status and the latest timeline for operations.
The Gemini Planet Imager (GPI) is a facility class instrument for the Gemini Observatory with the primary goal of directly detecting young Jovian planets. After several years of successful operations on sky at Gemini South, GPI is undergoing an upgrade at the University of Notre Dame and is being moved to Gemini North. We present the current performance results, from in-lab testing, for several of the upgraded components to the Integral Field Spectrograph (IFS) and the Calibration Wavefront Sensor (CAL) for GPI 2.0. These upgrades include changes to the IFS dispersion prisms, changes to the pupil viewing cameras, and changes to the low order wavefront sensor. These improvements are designed to improve the magnitude and contrast range of GPI. We describe the alignment of several components, their noise characteristics, and their performance in the GPI environment.
GPI is a facility instrument designed for the direct detection and characterization of young Jupiter mass exoplanets. GPI has helped establish that the occurrence rate of Jovian planets peaks near the snow line (~3 AU), and falls off toward larger separations. This motivates an upgrade of GPI to achieve deeper contrasts, especially at small inner working angles, to extend GPI’s operating range to fainter stars, and to broaden its scientific capabilities, all while leveraging its historical success. GPI was packed and shipped in 2022, and is undergoing a major science-driven upgrade. We present the status and purpose of the upgrades including an EMCCD-based pyramid wavefront sensor, broadband low spectral resolution prisms, new apodized-pupil Lyot coronagraph designs, upgrades of the calibration wavefront sensor and increased queue operability. We discuss the expected performance improvements and enhanced science capabilities to be made available in 2024.
The Gemini Planet Imager (GPI) is a dedicated high-contrast imaging facility designed for the direct detection and characterization of young Jupiter mass exoplanets. After six yrs of operation at Gemini South, GPI has helped establish that Jovian planets are rare at wide separations, but have higher occurrence rates at small separations. This motivates an upgrade of GPI to achieve deeper contrasts, especially at small inner working angles, while leveraging its current capabilities. GPI has been funded to undergo a major science-driven upgrade as part of a relocation to Gemini North (GN). Gemini plans to remove GPI at the end of 2020A. We present the status of the proposed upgrades to GPI including a EMCCD-based pyramid wavefront sensor, broadband low spectral resolution prisms and new apodized-pupil Lyot coronagraph designs. We discuss the expected performance improvements in the context of GPI 2.0's enhanced science capabilities which are scheduled to be made available at GN in 2022.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.