Road maintenance management presents a complex task for road authorities. The first presumption for the evaluation analysis and correct road construction rehabilitation is to have precise and up-to-date information about road pavement condition and level degradation. Different road crack types were proposed in the state of art in order to provide useful information for making pavement maintenance strategies. For this reason, we present in this paper a novel research to automatically detect and classify road cracks on two-dimensional digital images. Indeed, our proposed package is composed of two methods: crack detection and crack classification. The first method consists in detecting the cracks on images acquired by the VIAPIX® system developed by our company ACTRIS. To do so, we are based on our unsupervised approach cited in for road crack detection on two-dimensional pavement images. Then, in order to categorize each of the detected cracks, the second method of our package is applied. Based on principal component analysis (PCA), our method permits the classification of all the detected cracks into three types: vertical, horizontal, and oblique. The obtained results demonstrate the efficiency of our robust approaches in terms of good detection and classification on a variety of pavement images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.