A 63-electrode optofluidic refractive wavefront modulator enabling spatial frequency correction up to the seventh radial Zernike order, the highest spatial order ever achieved with a refractive dynamic wavefront modulator, is presented. The modulator is designed so that aberration correction performance is nearly identical in both horizontal and vertical orientations, virtually eliminating the gravity-induced parasitic surface deformations typical for optofluidic devices. With 55 of its electrodes located within the 1-cm clear pupil, the modulator offers the versatility of continuous face-sheet deformable mirrors within a compact, high efficiency, and transmissive device. Using a fluidic interfacing method based on wafer-level 3D micro-structuring of glass, the modulator is only 0.86-mm-thick, facilitating the cascading of multiple modulators within close proximity. We demonstrate a bi-directional stroke of more than 13 λ, and replications of Zernike mode shapes up to the seventh radial order with high fidelity, representing a significant leap in the performance of ultra-miniaturized refractive wavefront modulators.
We report a new optofluidic transmissive wavefront modulator optimized for gravity-neutral performance and miniaturized dimensions. The modulator is optimized for compensating gravity-induced aberrations by simulating its behavior with various design configurations. Miniaturization was achieved by a novel method for liquid filling and sealing of the modulator. Key elements of the new interface are intra-substrate channels fabricated by a selective laser-induced etching process. The modulator has a final thickness of 750 µm and can be operated in any orientation without significant loss of modulation quality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.