The surface-damage resistance of fused silica was enhanced 2.8-fold by removing a subsurface damage. For the conventionally polished fused silica surface, μm-scale subsurface damage and a shallow (20 nm to 100 nm) structurally modified zone produced during grinding and polishing were formed on the top of surface. Several surface etching techniques and super-precise polishing process were used to remove subsurface damage from a fused silica surface. First the conventionally polished surfaces were chemically etched in a buffered HF solution to remove 300μm of surface material, and then super-precise polishing was performed to obtain an optical surface. After that, the polishing compound was removed by using ion-beam etching. The effect of subsurface damage on laser damage resistance was characterized by the measuring of the laser-induced damage threshold (LIDT) for the laser radiations of 1064 nm and 266 nm respectively. For the wavelength of 1064 nm, the effect of the removal of subsurface damage wasn't clearly seen, although the enhancement of surface-damage resistance by the ion-beam etching could be confirmed. However, in the case of 266 nm, enhanced LIDT of 28 J/cm2 was obtained from the subsurface damage removed surface. The surface LIDT increased by 2.8 times compared to that of conventionally polished fused silica surfaces.
High-power solid-state ultraviolet (UV) lasers by using a have been in high demand because of their convenient operation procedure. An effective technique for UV generation is cascaded sum-frequency generation pumped by the output of near-IR solids-state lasers. The performance of such solid-state UV lasers appears to depend on the ability and reliability of nonlinear optical (NLO) crystals that are employed for laser frequency conversion. Discovery of CsLiB6O10(CLBO) crystals have enabled the production of such practical high-power all solid-state UV lasers. In 2001, UV output power up to 23.0 W by fourth harmonic generation of Nd:YAG laser was achieved. It is fact that laser-induced damage of NLO crystal is a limiting factor on reliable operation of high-power solid-state UV lasers. Bulk laser-induced damage of NLO crystal is related to the crystal's quality. In this paper, we have investigated the relationship among the bulk laser-induced damage threshold (LIDT), dislocation density and absorption of laser light in CLBO crystals with various crystallinity. The bulk LIDT of CLBO increased with decreasing dislocation density. High-quality crystals with a higher LIDT (15 - 18 GW/cm2) have a lower dislocation density of 6.6 x 103/cm2 than that of conventional CLBO (~15.0 x 103/cm2). The relationships between crystal quality and absorption of laser light will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.