KEYWORDS: Tumors, Education and training, Deep learning, Voxels, Magnetic resonance imaging, Data modeling, Tissues, Resection, Brain, Cross validation
PurposeGlioblastoma (GBM) is the most common and aggressive primary adult brain tumor. The standard treatment approach is surgical resection to target the enhancing tumor mass, followed by adjuvant chemoradiotherapy. However, malignant cells often extend beyond the enhancing tumor boundaries and infiltrate the peritumoral edema. Traditional supervised machine learning techniques hold potential in predicting tumor infiltration extent but are hindered by the extensive resources needed to generate expertly delineated regions of interest (ROIs) for training models on tissue most and least likely to be infiltrated.ApproachWe developed a method combining expert knowledge and training-based data augmentation to automatically generate numerous training examples, enhancing the accuracy of our model for predicting tumor infiltration through predictive maps. Such maps can be used for targeted supra-total surgical resection and other therapies that might benefit from intensive yet well-targeted treatment of infiltrated tissue. We apply our method to preoperative multi-parametric magnetic resonance imaging (mpMRI) scans from a subset of 229 patients of a multi-institutional consortium (Radiomics Signatures for Precision Diagnostics) and test the model on subsequent scans with pathology-proven recurrence.ResultsLeave-one-site-out cross-validation was used to train and evaluate the tumor infiltration prediction model using initial pre-surgical scans, comparing the generated prediction maps with follow-up mpMRI scans confirming recurrence through post-resection tissue analysis. Performance was measured by voxel-wised odds ratios (ORs) across six institutions: University of Pennsylvania (OR: 9.97), Ohio State University (OR: 14.03), Case Western Reserve University (OR: 8.13), New York University (OR: 16.43), Thomas Jefferson University (OR: 8.22), and Rio Hortega (OR: 19.48).ConclusionsThe proposed model demonstrates that mpMRI analysis using deep learning can predict infiltration in the peri-tumoral brain region for GBM patients without needing to train a model using expert ROI drawings. Results for each institution demonstrate the model’s generalizability and reproducibility.
Data scarcity and data imbalance are two major challenges in training deep learning models on medical images, such as brain tumor MRI data. The recent advancements in generative artificial intelligence have opened new possibilities for synthetically generating MRI data, including brain tumor MRI scans. This approach can be a potential solution to mitigate the data scarcity problem and enhance training data availability. This work focused on adapting the 2D latent diffusion models to generate 3D multi-contrast brain tumor MRI data with a tumor mask as the condition. The framework comprises two components: a 3D autoencoder model for perceptual compression and a conditional 3D Diffusion Probabilistic Model (DPM) for generating high-quality and diverse multi-contrast brain tumor MRI samples, guided by a conditional tumor mask. Unlike existing works that focused on generating either 2D multi-contrast or 3D single-contrast MRI samples, our models generate multi-contrast 3D MRI samples. We also integrated a conditional module within the UNet backbone of the DPM to capture the semantic class-dependent data distribution driven by the provided tumor mask to generate MRI brain tumor samples based on a specific brain tumor mask. We trained our models using two brain tumor datasets: The Cancer Genome Atlas (TCGA) public dataset and an internal dataset from the University of Texas Southwestern Medical Center (UTSW). The models were able to generate high-quality 3D multi-contrast brain tumor MRI samples with the tumor location aligned by the input condition mask. The quality of the generated images was evaluated using the Fréchet Inception Distance (FID) score. This work has the potential to mitigate the scarcity of brain tumor data and improve the performance of deep learning models involving brain tumor MRI data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.